Journal of comparative physiology

, Volume 92, Issue 1, pp 37–57 | Cite as

Horizontal compensatory eye movements in goldfish (Carassius auratus)

II. A comparison of normal and deafferented animals
  • Stephen S. EasterJr.
  • Pamela R. Johns


  1. 1.

    Goldfish were deprived of visual input and/or normally functional horizontal semicircular canals.

  2. 2.

    Their horizontal eye movements were measured from cinematographic records, and the extent to which the eyes compensated for horizontal rotations of the head was given by the “compensation factor,” CF, the ratio (rotation of the eyes relative to the head)/(rotation of the head). All data were obtained from freely-swimming fish.

  3. 3.

    The CF's for normal, canal-lesioned, blinded, and blinded/canal-lesioned animals were: −0.95±0.10, −0.80±0.10, −0.50±0.04, and −0.41±0.06 (means ±2 S.E.M.), respectively.

  4. 4.

    These figures lead to the conclusion that the visual input contributes −0.39 to −0.45 to the CF, while the canal input contributes only −0.09 to −0.17. Thus, the visual input is the major factor; the canals are quantitatively much less important. There is in addition a third source (or sources) contributing to the CF, since the blinded/canal-lesioned fish compensated partially.

  5. 5.

    Experiments of partially restrained animals showed that this third source is not a preprogrammed instruction, nor is it dependent on sensory feedback from the rest of the labyrinth, tactile receptors, lateral line current detectors, or proprioceptors in the trunk. Its identity remains a mystery.



Lateral Line Semicircular Canal Visual Input Sensory Feedback Carassius Auratus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benjamins, C. E.: Contribution à la connaissance des réflexes toniques des muscles de l'oeil. Archs. néerl. Physiol.2, 536–544 (1918)Google Scholar
  2. Biederman-Thorson, M., Thorson, J.: Rotation-compensating reflexes independent of the labyrinth: neuromuscular correlates in the pigeon. J. comp. Physiol.83, 103–122 (1973)Google Scholar
  3. Bizzi, E., Kalil, R. E., Tagliasco, V.: Eye-head coordination in monkeys: evidence for centrally patterned organization. Science173, 452–454 (1971)Google Scholar
  4. Collewijn, H.: Optokinetic eye movements in the rabbit: input-output relations. Vision Res.9, 117–132 (1969)Google Scholar
  5. Delius, J. E., Vollrath, F. W.: Rotation compensating reflexes independent of the labyrinth: neurosensory correlates in pigeons. J. comp. Physiol.83, 123–124 (1973)Google Scholar
  6. Dijkgraaf, S.: Die Augenstielbewegungen der Languste (Panulirus vulgaris). Experientia (Basel)11, 329–330 (1955)Google Scholar
  7. Dijkgraaf, S.: Über die kompensatorischen Augenstielbewegungen bei Brachyuren. Pubbl. Staz. Zool. Napoli28, 341–358 (1956)Google Scholar
  8. Dijkgraaf, S.: The functioning and significance of the lateral-line organs. Biol. Rev.38, 51–105 (1963)Google Scholar
  9. Easter, S. S.: Spontaneous eye movements in restrained goldfish. Vision Res.11, 333–342 (1971)Google Scholar
  10. Easter, S. S.: Pursuit eye movements in goldfish (Carassius auratus). Vision Res.12, 673–688 (1972a)Google Scholar
  11. Easter, S. S.: Optokinetic nystagmus in goldfish. Soc. Neurosci. Abstracts2, 212 (1972b)Google Scholar
  12. Easter, S. S., Johns, P. R., Heckenlively, D.: Horizontal compensatory eye movements in goldfish (Carassius auratus). I. The normal animal. J. comp. Physiol.92, 23–35 (1974)Google Scholar
  13. Evoy, W. H., Cohen, M. J.: Central and peripheral control of arthropod movements. Advance comp. Physiol. Biochem.4, 225–266 (1971)Google Scholar
  14. Harden-Jones, F. R.: The reaction of fish to moving backgrounds. J. exp. Biol.40, 437–446 (1963)Google Scholar
  15. Harris, A. J.: Eye movements of the dogfishSqualus acanthias L. J. exp. Biol.43, 107–130 (1965)Google Scholar
  16. Hermann, H. T., Constantine, M.: Eye movements in the goldfish. Vision Res.11, 313–333 (1971)Google Scholar
  17. Horridge, G. A.: Study of a system, as illustrated by the Optokinetic response. In: S.E.B. Symp.20, Nervous and hormonal mechanisms of integration, p. 179–197 (1966)Google Scholar
  18. Lowenstein, O.: The tonic function of the horizontal semicircular canals in fishes. J. exp. Biol.14, 473–482 (1937)Google Scholar
  19. Lowenstein, O.: The labyrinth. In: Fish Physiology, Vol. V, 207–241 (ed. Hoar, W. D., and D. J. Randall). New York: Academic Press 1971Google Scholar
  20. Lowenstein, O., Sand, A.: The individual and integrated activity of the semicircular canals of the elasmobranch labyrinth. J. Physiol. (Lond.)99, 89–101 (1940)Google Scholar
  21. Lyon, E. P.: A contribution to the comparative physiology of compensatory motions. Amer. J. Physiol.3, 86–114 (1899)Google Scholar
  22. Lyon, E. P.: Compensatory motions in fishes. Amer. J. Physiol.4, 77–82 (1900)Google Scholar
  23. Roberts, B. L.: Activity of lateral-line sense organs in swimming dogfish. J. exp. Biol.56, 105–118 (1972)Google Scholar
  24. Robinson, D. A.: Eye movement control in primates. Science161, 1219–1224 (1968)Google Scholar
  25. Skavenski, A. A., Robinson, D. A.: Role of abducens neurons in vestibuloocular reflex. J. Neurophysiol.36, 724–738 (1973)Google Scholar
  26. Szentágothai, J.: The elementary vestibulo-ocular reflex arc. J. Neurophysiol.13, 395–407 (1950)Google Scholar
  27. Ter Braak, J. W. G.: Untersuchungen über optokinetischen Nystagmus. Arch. néerl. Physiol.21, 309–376 (1936)Google Scholar
  28. Traill, A. B., Mark, R. F.: Optic and static contributions to ocular counterrotation in carp. J. exp. Biol.52, 109–124 (1970)Google Scholar
  29. Trevarthen, C.: Vision in fish: the origins of the visual frame of action in vertebrates. In: The central nervous system and fish behavior (ed. D. Ingle), p. 61–96. Chicago: Chicago University Press 1968Google Scholar
  30. Walls, G. L.: The evolutionary history of eye movements. Vision Res.2, 69–80 (1962)Google Scholar
  31. Zenkin, G. M., Pigarev, I. N.: Detector properties of the ganglion cells of the pike retina. Biophysics14, 763–772 (1969)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Stephen S. EasterJr.
    • 1
  • Pamela R. Johns
    • 1
  1. 1.Department of ZoologyUniversity of MichiganAnn ArborUSA

Personalised recommendations