Skip to main content
Log in

Transfer and expression of PCB-degradative genes into heavy metal resistantAlcaligenes eutrophus strains

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Sites polluted with organic compounds frequently contain inorganic pollutants such as heavy metals. The latter might inhibit the biodegradation of the organics and impair bioremediation. Chromosomally located polychlorinated biphenyl (PCB) catabolic genes ofAlcaligenes eutrophus A5,Achromobacter sp. LBS1C1 andAlcaligenes denitrificans JB1 were introduced into the heavy metal resistantAlcaligenes eutrophus strain CH34 and related strains by means of natural conjugation. Mobile elements containing the PCB catabolic genes were transferred fromA. eutrophus A5 andAchromobacter sp. LB51C1 intoA. eutrophus CH34 after transposition onto their endogenous IncP plasmids pSS50 and pSS60, respectively. The PCB catabolic genes ofA. denitrificans JB1 were transferred intoA. eutrophus CH34 by means of RP4::Mu3A mediated prime plasmid formation. TheA. eutrophus CH34 transconjugant strains expressed both catabolic and metal resistance markers. Such constructs may be useful for the decontamination of sites polluted by both organics and heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams RH, Huang CM, Higson FK, Brenner V & Focht DD (1992) Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergeneric mating. Appl. Environ. Microbiol. 58: 647–654

    Google Scholar 

  • Ahmad D, Massé R & Sylvestre M (1990) Cloning and expression of genes involved in 4-chlorobiphenyl transformation byPseudomonas testosteroni: homology to polychlorobiphenyl-degrading genes in other bacteria. Gene 86: 53–61

    Google Scholar 

  • Asturias JA & Timmis KN (1993) Three different 2,3-dihydroxybiphenyl-1,2-dioxygenase genes in the Gram-positive polychlorobiphenyl-degrading bacteriumRhodococcus globerulus P6. J. Bacteriol. 175: 4631–4640

    Google Scholar 

  • Babich H & Stotzky G (1983) Toxicity of nickel to microbes: environmental aspects. Adv. Appl. Microbiol. 29: 6782–6790

    Google Scholar 

  • Barkay T, Liebert C & Gillman M (1993) Conjugal gene transfer to aquatic bacteria detected by the generation of a new phenotype. Appl. Environ. Microbiol. 59: 807–814

    Google Scholar 

  • Bedard DL, Wagner RE, Brennan MJ, Haberl ML & Brown JF Jr (1987) Extensive degradation of aroclors and environmentally transformed polychlorinated biphenyls byAlcaligenes eutrophus H850. Appl. Environ. Microbiol. 53: 1094–1102

    Google Scholar 

  • Brunner W, Sutherland FH & Focht DD (1985) Enhanced biodegradation of polychlorinated biphenyls in soil by analog enrichment and bacterial inoculation. J. Environ. Qual. 14: 324–328

    Google Scholar 

  • Burlage RS, Bemis LA, Layton AC, Sayler GS & Larimer F (1990) Comparative genetic organization of incompatibility group P degradative plasmids. J. Bacteriol. 172: 6818–6825

    Google Scholar 

  • Catelani D, Colombi A, Sorlini C & Treccani V (1973) Metabolism of biphenyl-2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate: the meta-cleavage product from 2,3-dihydroxybiphenyl byPseudomonas putida. Biochem. J. 134: 1063–1066

    Google Scholar 

  • Chaudry GR & Huang GH (1988) Isolation and characterization of a new plasmid from aFlavobacterium sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate. J. Bacteriol. 170: 3897–3902

    Google Scholar 

  • Collard JM, Provoost A, Taghavi S & Mergeay M (1993) A new type of Alcaligenes eutrophus CH34 zinc resistance generated by mutations affecting regulation of thecnr cobalt-nickel resistance system. J. Bacteriol. 175: 779–784

    Google Scholar 

  • Crawford RH & Mohn WW (1985) Microbiological removal of pentachlorophenol from soil using aFlavobacterium. Enzyme Microbiol. Technol. 7: 617–620

    Google Scholar 

  • Criddle CS, DeWitt JT, Grbic-Galic D & McCarty PL (1990) Transformation of carbon tetrachloride byPseudomonas sp. strain KC under denitrification conditions. Appl. Environ. Microbiol. 56: 3240–3246

    Google Scholar 

  • De Wilde K, Springael D & Mergeay M (1992) Cloning ofbphC gene of the PCB catabolic transposon Tn4371 fromAlcaligenes eutrophus A5. Arch. Int. Physiol. Biochim. 101: B33

  • Diels L, Faelen M, Mergeay M & Nies D (1985) Mercury transposons from plasmids governing multiple resistance to heavy metals inAlcaligenes eutrophus CH34. Arch. Int. Physiol. Biochim. 93: B27-B28

    Google Scholar 

  • Diels L & Mergeay M (1990) DNA-probe mediated detection of resistant bacteria from soils highly polluted by heavy metals. Appl. Environ. Microbiol. 56: 1485–1491

    Google Scholar 

  • Diels L, Sadouk A & Mergeay M (1989) Large plasmids governing multiple resistance to heavy metals: a genetic approach. Toxicol. Environ. Chem. 23: 79–89

    Google Scholar 

  • Diels L, Springael D, Kreps S & Mergeay M (1991) Construction and characterization of heavy metal resistant PCB degradingAlcaligenes sp. strains. In: Hinchee RE & Olfenbuttel RF (Eds) Proceedings from In Situ and On Site Bioreclamation Symposium 1991, San Diego (pp 483–493). Butterworth-Heinemann, Stoneham

    Google Scholar 

  • Diels L, Van Roy S, Taghavi S, Doyen W, Leysen R & Mergeay M (1993) The use ofAlcaligenes eutrophus immobilized in a tubular membrane reactor for heavy metal recuperation. Biohydrometallurgy meeting. Jackson Hole, August 22–25

  • Dong Q, Sadouk A, van der Lelie D, Taghavi S, Ferhat A, Nuyten JM, Borremans B, Mergeay M & Toussaint A (1992) Cloning and sequencing of IS1086, anAlcaligenes eutrophus insertion element related to IS30 and IS4351. Journal of Bacteriol. 174: 8133–8138

    Google Scholar 

  • Don RH, Weightman AJ, Knackmuss HJ & Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate inAlcaligenes eutrophus JMP134(pJP4). J. Bacteriol. 161: 85–90

    Google Scholar 

  • Edgehill RU & Finn RK (1983) Microbial treatment of soil to remove pentachlorophenol. Appl. Environ. Microbiol. 45: 1122–1125

    Google Scholar 

  • Finn RK (1983) Use of specialized strains in the treatment of industrial waste and in soil decontamination. Experientia 39: 1231–1236

    Google Scholar 

  • Focht DD & Brunner W (1985) Kinetics of biphenyl and polychlorinated biphenyl metabolism in soil. Appl. Environ. Microbiol. 50: 1058–1063

    Google Scholar 

  • Focht DD & Shelton D (1987) Growth kinetics ofPseudomonas alcaligenes C-O relative to inoculation and 3-chlorobenzoate metabolism in soil. Appl. Environ. Microbiol. 53: 1846–1849

    Google Scholar 

  • Friedrich B, Meyer M & Schlegel HG (1983) Transfer and expression of the herbicide-degrading plasmid pJP4 in aerobic autotrophic bacteria. Arch. Microbiol. 134: 92–97

    Google Scholar 

  • Fulthorpe RR & Wyndham RC (1989) Survival and activity of a 3-chlorobenzoate-catabolic genotype in a natural system. Appl. Environ. Microbiol. 55: 1584–1590

    Google Scholar 

  • —— (1991) Transfer and expression of the catabolic plasmid pBRC60 in wild bacterial recipients in a freshwater ecosystem. Appl. Environ. Microbiol. 57: 1546–1553

    Google Scholar 

  • —— (1992) Involvement of a chlorobenzoate-catabolic transposon, Tn5271, in community adaptation to chlorobiphenyl, chloroaniline, and 2,4-dichlorophenoxyacetic acid in a freshwater ecosystem. Appl. Environ. Microbiol. 58: 314–325

    Google Scholar 

  • Furukawa K & Chakrabarty AM (1982) Involvement of plasmids in total degradation of chlorinated biphenyls. Appl. Environ. Microbiol. 44: 619–626

    Google Scholar 

  • Furukawa K, Hayase N, Taira K & Tomizuka N (1989) Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated biphenyl catabolism: some soil bacteria possess a highly conservedbph operon. J. Bacteriol. 171: 5467–5472

    Google Scholar 

  • Furukawa K & Miyazaki T (1986) Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation inPseudomonas pseudoalcaligenes. J. Bacteriol. 166: 392–398

    Google Scholar 

  • Furukawa K, Mutsumura F & Tonomura K (1978)Alcaligenes andAcinetobacter strains capable of degrading polychlorinated biphenyls. Agric. Biol. Chem. 42: 543–548

    Google Scholar 

  • Golovleva LA, Pertsova RN, Boronin AM, Travkin VM & Kozlovsky SA (1988) Kelthane degradation by genetically engineeredPseudomonas aeruginosa BS827 in a soil ecosystem. Appl. Environ. Microbiol. 54: 1587–1590

    Google Scholar 

  • Haas D & Holloway BC (1976) R factor variants with enhanced sex factor activity inPseudomonas aeruginosa. Mol. Gen. Genet. 144: 243–251

    Google Scholar 

  • Haas D & Reimann C (1989) Use of IncP plasmids in chromosomal genetics of gram-negative bacteria. In: Thomas CM (Ed.) Promiscuous plasmids of gram-negative bacteria (pp 185–206). Academic Press, London

    Google Scholar 

  • Harder PA & Kunz DA (1986) Characterization of the OCT plasmid encoding alkane oxidation and mercury resistance inPseudomonas putida. J. Bacteriol. 165: 650–653

    Google Scholar 

  • Harkness MR, McDermott JB, Abramowicz DA, Salvo JJ, Flanagan WP, Stephens ML, Mondello FJ, May RJ, Lobos JH, Carroll KM, Brennan MJ, Bracco AA, Fish KM, Warner GL, Wilson PR, Dietrich DK, Lin DT, Morgan CB & Gately WL (1993) In situ stimulation of aerobic biodegradation in Hudson River sediments. Science 259: 503–507

    Google Scholar 

  • Haugland RA, Schlamm DJ, Lyons RP, Sferra PR & Chakrabarty AM (1990) Degradation of chlorinated phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures. Appl. Environ. Microbiol. 5: 1357–1362

    Google Scholar 

  • Havel J & Reineke W (1991) Total degradation of various chlorobiphenyls by cocultures and in vivo constructed pseudomonads. FEMS Microbiol. Lett. 78: 163–170

    Google Scholar 

  • —— (1992) Degradation of Aroclor 1221 and survival of strains in soil microcosms. Appl. Microbiol. Biotechnol. 38: 129–134

    Google Scholar 

  • —— (1993) Degradation of Aroclor 1221 in soil by a hybrid pseudomonad. FEMS Microbiol. Lett. 108: 211–218

    Google Scholar 

  • Hayase N, Taira K & Furukawa K (1990)Pseudomonas putida KF715bphABCD operon encoding biphenyl and polychlorinated biphenyl degradation: cloning, analysis, and expression in soil bacteria. J. Bacteriol. 172: 1160–1164

    Google Scholar 

  • Herrmann H, Janke D, Krejsa S & Roy M (1988) In vivo generation of R68.45-pPGH1 hybrid plasmid conferring a Phl+ (meta pathway) phenotype. Mol. Gen. Genet. 214: 173–176

    Google Scholar 

  • Hickey WJ, Searles DB & Focht DD (1993) Enhanced mineralization of polychlorinated biphenyls in soil inoculated with chlorobenzoate-degrading bacteria. Appl. Environ. Microbiol. 59: 1194–1200

    Google Scholar 

  • Hill KE, Weightmann AJ & Fry JC (1992) Isolation and screening of plasmids from the epilithon which mobilize recombinant plasmid pD10. Appl. Environ. Microbiol. 58: 1292–1300

    Google Scholar 

  • Jain RK & Sayler GS (1987) Problems and potential for in situ treatment of environmental pollutants by engineered microorganisms. Microbiol. Sci. 4: 59–63

    Google Scholar 

  • Khan A & Walia S (1989) Cloning of bacterial genes specifying degradation of 4-chlorobiphenyl fromPseudomonas putida OU83. Appl. Environ. Microbiol. 55: 798–805

    Google Scholar 

  • Kilbane JJ, Chatterjee DK & Chakrabarty AM (1983) Detoxification of 2,4,5-trichlorophenoxyacetic acid from contaminated soil byPseudomonas cepacia. Appl. Environ. Microbiol. 45: 1697–1700

    Google Scholar 

  • Kimbara K, Hashimoto T, Fukuda M, Koana T, Takagi M, Oishi M & Yano K (1989) Cloning and scquencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenylto benzoic acid in the polychlorinated biphenyl-degrading soil bacteriumPseudomonas sp. strain KKS102. J. Bacteriol. 171: 2740–2747

    Google Scholar 

  • Kolenc RJ, Innis WE, Glick BR, Robinson CW & Mayfield CI (1988) Transfer and expression of mesophilic plasmid-mediated degradative capacity in a psychotrophic bacterium. Appl. Environ. Microbiol. 54: 638–641

    Google Scholar 

  • Kovalick W (1991) Perspectives on health and environmental risks of soil pollution and experiences with innovative remediation technologies, abst.3-3.1. Abstr. 4th World Congr. Chem. Eng. Karlsruhe, Germany, 16 to 21 June 1991

  • Layton AC, Sanseverino J, Wallace W, Corcoran C & Sayler GS (1992) Evidence for 4-chlorobenzoic acid dehalogenation mediated by plasmids related to pSS50. Appl. Environ. Microbiol. 58: 399–402

    Google Scholar 

  • Lejeune P, Mergeay M, van Gijsegem F, Faelen M, Gerits J & Toussaint A (1983) Chromosome transfer and R-prime plasmid formation mediated by plasmid pULB113 (RP4::Mini-Mu) inAlcaligenes eutrophus CH34 andPseudomonas fluorescens 6.2. J. Bacteriol. 155: 1015–1026

    Google Scholar 

  • Liesegang K, Lemke K, Siddiqui RA & Schlegel HG (1993) Characterization of the inducable nickel and cobalt resistance determinant cnr from pMOL28 ofAlcaligenes eutrophus CH34. J. Bacteriol. 175: 767–778

    Google Scholar 

  • McClure NC, Fry JC & Weightman AJ (1991) Survival and catabolic activity of natural and genetically engineered bacteria in a laboratory-scale activated-sludge unit. Appl. Environ. Microbiol. 57: 366–373

    Google Scholar 

  • Mergeay M (1991) Towards an understanding of the genetics of bacterial metal resistance. Trends Biotechnol. 9: 17–24

    Google Scholar 

  • Mergeay M, Houba C & Gerits J (1978) Extrachromosomal inheritance controlling resistance to cadmium, cobalt and zinc ions: evidence from curing in a pseudomonas. Arch. Int. Physiol. Biochim. 86: 440–441

    Google Scholar 

  • Mergeay M, Lejeune P, Sadouk A, Gerits J & Fabry L (1987) Shuttle transfer (or retrotransfer) of chromosomal markers mediated by plasmid pULB 113. Mol. Gen. Genet. 209: 61–70

    Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P & Van Gijsegem F (1985)Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162: 328–334

    Google Scholar 

  • Mergeay M, Springael D & Top E (1990) Gene transfer in polluted soils. In: Fry JC & Day MC (Eds) Bacterial genetics in natural environments. Chapman & Hall, London, pp 152–171

    Google Scholar 

  • Miguez CB, Creer CW & Ingram JM (1990) Degradation of monoand dichlorobenzoic acid isomers by two natural isolates ofAlcaligenes denitrificans. Arch. Microbiol. 154: 139–143

    Google Scholar 

  • Mokross H, Schmidt E & Reineke W (1990) Degradation of 3-chlorobiphenyl by in vivo constructed hybridPseudomonads. FEMS Microbiol. Lett. 71: 179–186

    Google Scholar 

  • Mondello FJ (1989) Cloning and expression inEscherichia coli ofPseudomonas sp. strain LB400 genes encoding polychlorinated biphenyl degradation. J. Bacteriol. 171: 1725–1732

    Google Scholar 

  • Morgan P & Watkinson RJ (1989) Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds. FEMS Microbiol. Rev. 63: 277–300

    Google Scholar 

  • Nakatsu C, Ng J, Singh R, Straus N & Wyndham C (1991) Chlorobenzoate catabolic transposon Tn5271 is a composite class I element with flanking class II insertion sequences. Proc. Natl. Acad. Sci. USA 88: 8312–8316

    Google Scholar 

  • Nies A, Nies DH & Silver S (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant fromAlcaligenes eutrophus. J. Biol. Chem. 265: 5648–5653

    Google Scholar 

  • Nies DH, Nies A, Chu L & Silver S (1989) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system fromAlcaligenes eutrophus. Proc. Natl. Acad. Sci. USA 86: 7351–7355

    Google Scholar 

  • Nies DH & Silver S (1989) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc and cobalt inAlcaligenes eutrophus. J. Bacteriol. 171: 896–900

    Google Scholar 

  • Parsons JR, Sijm DTHM, van Laar A & Hutzinger O (1988) Biodegradation of chlorinated biphenyls and benzoic acids by aPseudomonas strain. Appl. Microbiol. Biotechnol. 29: 81–84

    Google Scholar 

  • Perkins EJ, Gordon MP, Caceres O & Lurquin PF (1990) Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J. Bacteriol. 172: 2351–2359

    Google Scholar 

  • Pettigrew CA & Sayler GS (1986) The use of DNA:DNA colony hybridization in the rapid isolation of 4-chlorobiphenyl degradative bacterial phenotypes. J. Microbiol. Meth. 5: 205–213

    Google Scholar 

  • Pettigrew CA, Breen A, Corcoran C & Sayler GS (1990) Chlorinated biphenyl mineralization by individual populations and consortia of freshwater bacteria. Appl. Environ. Microbiol. 56: 2036–2045

    Google Scholar 

  • Powell B, Mergeay M & Christofi N (1989) Transfer of broad host range plasmids to sulphate-reducing bacteria. FEMS Lett. 59: 269–274

    Google Scholar 

  • Ramos JL, Duque E & Ramos-Gonzalez MI (1991) Survival in soils of an herbicide-resistantPseudomonas putida strain bearing a recombinant TOL plasmid. Appl. Environ. Microbiol. 57: 260–266

    Google Scholar 

  • Sadouk A & Mergeay M (1993) Chromosome mapping inAlcaligenes eutrophus CH34. Mol. Gen. Genet. 240: 181–187

    Google Scholar 

  • Said WA & Lewis DL (1991) Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Appl. Environ. Microbiol. 57: 1498–1503

    Google Scholar 

  • Sayler GS, Hooper SW, Layton AC & King JMH (1990) Catabolic plasmids of environmental and ecological significance. Microb. Ecol. 19: 1–20

    Google Scholar 

  • Schlegel HG, Kaltwasser H & Gottschalk G (1961) Ein Sumbersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstum physiologische Untersuchungen. Arch. Mikrobiol. 38: 205–222

    Google Scholar 

  • Schraa G, Boone ML, Jetten MSM, van Neerven ARW, Colberg PJ & Zehnder AJB (1986) Degradation of 1,4-dichlorobenzene byAlcaligenes sp strain A175. Appl. Environ. Microbiol. 52: 1374–1381

    Google Scholar 

  • Selifonov SA & Starovoitov II (1991) Comparative study of the enzyme of meta-cleavage of the aromatic ring in strains of the bacteriumPseudomonas with plasmid and chromosomal genetic control of biphenyl andm-toluate catabolism. Biochem. 55: 1616–1623

    Google Scholar 

  • Sensfuss C & Schlegel HG (1989) Plasmid pMOL28-encoded resistance to nickel is due to a specific efflux. FEMS Microbiol. Lett. 55: 295–298

    Google Scholar 

  • Shields MS, Hooper SW & Sayler GS (1985) Plasmid mediated mineralization of 4-chlorobiphenyl. J. Bacteriol. 163: 882–889

    Google Scholar 

  • Siddiqui RA, Benthin K & Schlegel HG (1989) Cloning of pMOL28-encoded nickel resistance genes and expression of the genes inAlcaligenes eutrophus andPseudomonas spp. J. Bacteriol. 171: 5071–5078

    Google Scholar 

  • Smith CA & Thomas C (1989) Relationships and evolution of IncP plasmids. In: Thomas CM (Ed.) Promiscuous plasmids of gramnegative bacteria, (pp 57–77). Academic Press, London

    Google Scholar 

  • Springael D, Diels L, Hooyberghs L, Kreps S & Mergeay M (1993a) Construction and characterization of heavy metal resistant haloaromatic degradingAlcaligenes eutrophus strains. Appl. Environ. Microbiol. 59: 334–339

    Google Scholar 

  • Springael D (1992) Ph.D. thesis. Vrije Universiteit Brussel, Brussels, Belgium

  • Springael D, Kreps S & Mergeay M (1993b) Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes inAlcaligenes eutrophus A5. J. Bacteriol. 175: 1674–1681

    Google Scholar 

  • Springael D, van Thor J, Ryngaert A, Commandeur LCM, de Wilde K, Parsons JR & Mergeay M (1992) In vivo cloning of aromatic catabolic operons ofAlcaligenes denitrificans JB1 inAlcaligenes eutrophus CH34 using RP4::Mu3A. Arch. Int. Physiol. Biochim. 101: B33

  • Taira K, Hirose J, Hayashida S & Furukawa K (1992) Analysis ofbph operon from the polychlorinated biphenyl-degrading stain ofPseudomonas pseudoalcaligenes KF707. J. Biol. Chem. 267: 4844–4853

    Google Scholar 

  • Tardif G, Greer CW, Labbé D & Lau PCK (1991) Involvement of a large plasmid in the degradation of 1,2-dichloroethane byXanthobacter autotrophicus. Appl. Environ. Microbiol. 57: 1853–1857

    Google Scholar 

  • Thomas AW, Slater JH & Weightman AJ (1992) The dehalogenase genesdehI fromPseudomonas putida PP3 is carried on an unusual mobile genetic element designated DEH. J. Bacteriol. 174: 1932–1940

    Google Scholar 

  • Topp E & Hanson RS (1990) Factors influencing the survival and activity of a pentachlorophenol-degradingFlavobacterium sp. strain in soil slurries. Can. J. Soil Sci. 70: 83–91

    Google Scholar 

  • Tsuda M & Iino T (1990) Naphthalene degrading genes on plasmid NAH7 are on a defective transposon. Mol. Gen. Genet. 223: 33–39

    Google Scholar 

  • Tsuda M, Minegishi KI & Iino T (1989) Toluene transposons Tn4651 and Tn4653 are class II transposons. J. Bacteriol. 171: 1386–1393

    Google Scholar 

  • Tyagi RD, Couillard D & Villeneuve JP (1986) Functional design of activated sludge processes with heavy metal inhibition. Can. J. Chem. Eng. 64: 632–638

    Google Scholar 

  • Valo R & Salkinoja-Salonen M (1986) Bioreclamation of chlorophenol-contaminated soil by composting. Appl. Microbiol. Biotechnol. 25: 68–75

    Google Scholar 

  • Van der Lelie D, Sadouk A, Ferhat A, Taghavi S, Toussaint A & Mergeay M (1992) Stress and survival inAlcaligenes eutrophus CH34: Effects of temperature and genetic rearrangements. In: Gauthier MJ (Ed.) Gene transfers and environment, (pp 27–32). Springer-Verlag, Berlin

    Google Scholar 

  • Van Gijsegem F & Toussaint A (1982) Chromosome transfer and R-prime formation by an RP4::mini Mu derivative inEscherichia coli, Salmonella typhimurium, Klebsiella pneumoniae andProteus mirabilis. Plasmid 7: 30–44

    Google Scholar 

  • Van Gijsegem F, Toussaint A & Casadaban M (1987) Mu as a genetic tool. In: Symonds N, Toussaint A, van de Putte P & Howe MM (Eds) Phage Mu, (pp 215–250). Cold Spring Harbor laboratory, USA

    Google Scholar 

  • Van der Meer JR, Roelofson W, Schraa G & Zehnder AJB (1987) Degradation of low concentrations of dichlorobenzenes and 1,2,4-trichlorobenzene byPseudomonas sp. strain P51 in non-sterile soil columns. FEMS Microbiol. Ecol. 45: 333–341

    Google Scholar 

  • Van der Meer JR, de Vos WM, Harayama S & Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56: 677–694

    Google Scholar 

  • Van der Meer JR, Zehnder AJB & de Vos WM (1991) Identification of a novel composite transposable element, Tn5280, carrying chlorobenzene dioxygenase genes inPseudomonas sp. strain P51. J. Bacteriol. 173: 7077–7083

    Google Scholar 

  • Waelkens F, Verdickt K, Vanduffel L, Vanderleyden J, Van Gool A & Mergeay M (1987) Intergeneric complementation byAgrobacterium tumefaciens chromosomal genes and its potential use for linkage mapping. FEMS Microbiol. Lett. 44: 329–334

    Google Scholar 

  • Wyndham RC, Nakatsu C, Peel M, Cashore A, Ng J & Szilagyi F (1994) Distribution of the catabolic transposon Tn5271 in a groundwater bioremediation system. Appl. Environ. Microbiol. 60: 86–93

    Google Scholar 

  • Yates JR, Mondella FJ (1989) Sequence similarities in the genes encoding polychlorinated biphenyl degradation byPseudomonas strain LB400 andAlcaligenes eutrophus H850. J. Bacteriol. 171: 1733–1735

    Google Scholar 

  • Zhang C & Holloway BW (1992) Physical and genetic mapping of thecatA region ofPseudomonas aeruginosa. J. Gen. Microbiol. 138: 1097–1107

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Springael, D., Diels, L. & Mergeay, M. Transfer and expression of PCB-degradative genes into heavy metal resistantAlcaligenes eutrophus strains. Biodegradation 5, 343–357 (1994). https://doi.org/10.1007/BF00696469

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696469

Key words

Navigation