Skip to main content
Log in

Evolution of chlorocatechol catabolic pathways

Conclusions to be drawn from comparisons of lactone hydrolases

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The aerobic bacterial degradation of chloroaromatic compounds often involves chlorosubstituted catechols as central intermediates. They are converted to 3-oxoadipate in a series of reactions similar to that for catechol catabolism and therefore designated as modifiedortho-cleavage pathway. Among the enzymes of this catabolic route, the chlorocatechol 1,2-dioxygenases are known to have a relaxed substrate specificity. In contrast, several chloromuconate cycloisomerases are more specific, and the dienelactone hydrolases of chlorocatechol catabolic pathways do not even convert the corresponding intermediate of catechol degradation, 3-oxoadipate enol-lactone. While the sequences of chlorocatechol 1,2-dioxygenases and chloromuconate cycloisomerases are very similar to those of catechol 1,2-dioxygenases and muconate cycloisomerases, respectively, the relationship between dienelactone hydrolases and 3-oxoadipate enol-lactone hydrolases is more distant. They seem to share an α/β hydrolase fold, but the sequences comprising the fold are quite dissimilar. Therefore, for chlorocatechol catabolism, dienelactone hydrolases might have been recruited from some other, preexisting pathway. Their relationship to dienelactone (hydrolases identified in 4-fluorobenzoate utilizing strains ofAlcaligenes andBurkholderia (Pseudomonas) cepacia is investigated). Sequence evidence suggests that the chlorocatechol catabolic operons of the plasmids pJP4, pAC27, and pP51 have been derived from a common precursor. The latter seems to have evolved for the purpose of halocatechol catabolism, and may be considerably older than the chemical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrich TL & Chakrabarty AM (1988) Transcriptional regulation, nucleotide sequence, and localization of the promoter of thecatBC operon inPseudomonas putida. J. Bacteriol. 170: 1297–1304

    Google Scholar 

  • Aldrich TL, Frantz B, Gill JF, Kilbane JJ & Chakrabarty AM (1987) Cloning and complete nucleotide sequence determination of thecatB gene encodingcis,cis-muconate lactonizing enzyme. Gene 52: 185–195

    Google Scholar 

  • Alexander M (1979) Role of Cometabolism. In: Bourquin AW & Pritchard PH (Eds) Proceedings of the Workshop: Microbial Degradation of Pollutants in Marine Environments (pp 67–75). U.S. Environmental Protection Agency, Gulf Breeze, FL

    Google Scholar 

  • Amy PS, Schulke JW, Frazier LM & Seidler RJ (1985) Characterization of aquatic bacteria and cloning of genes specifying partial degradation of 2,4-dichlorophenoxyacetic acid. Appl. Environ. Microbiol. 49: 1237–1245

    Google Scholar 

  • Asplund G & Grimvall A (1991) Organohalogens in nature. More widespread than previously assumed. Environ. Sci. Technol. 25: 1346–1350

    Google Scholar 

  • Babiuk LA & Paul EA (1970) The use of fluorescein isothiocyanate in the determination of the bacterial biomass of grassland soil. Can. J. Microbiol. 16: 57–62

    Google Scholar 

  • Bayly RC & Barbour MG (1984) The degradation of aromatic compounds by themeta and gentisate pathways. In: Gibson DT (Ed) Microbial Degradation of Organic Compounds (pp 253–294). Marcel Dekker, Inc., New York/Basel

    Google Scholar 

  • Bhat MA, Ishida T, Horiike K, Vaidyanathan CS & Nozaki M (1993) Purification of 3,5-dichlorocatechol 1,2-dioxygenase, a nonheme iron dioxygenase and a key enzyme in the biodegradation of a herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), fromPseudomonas cepacia CSV90. Arch. Biochem. Biophys. 300: 738–746

    Google Scholar 

  • Bhat MA, Tsuda M, Horiike K, Nozaki M, Vaidyanathan CS & Nakazawa T (1994) Identification and characterization of a new plasmid carrying genes for degradation of 2,4-dichlorophenoxyacetate fromPseudomonas cepacia CSV90. Appl. Environ. Microbiol. 60: 307–312

    Google Scholar 

  • Blom A, Harder W & Matin A (1992) Unique and overlapping pollutant stress proteins ofEscherichia coli. Appl. Environ. Microbiol. 58: 331–334

    Google Scholar 

  • Bollag J-M, Briggs GG, Dawson JE, & Alexander M (1968) 2,4-D metabolism. Enzymatic degradation of chlorocatechols. J. Agric. Food Chem. 16: 829–833

    Google Scholar 

  • Broderick JB & O'Halloran TV (1991) Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistry 30: 7349–7358

    Google Scholar 

  • Brown TM, Appel AJ, Hughes EJ, & Houghton JE (1992) Preliminary characterization and DNA sequence analysis ofcatR, BCA inPseudomonas putida, biotype A. Abstr. 92nd Annu. Meet. Am. Soc. Microbiol. K-38, p 262

  • Cairns J, Overbaugh J & Miller S (1988) The origin of mutants. Nature (London) 335: 142–145

    Google Scholar 

  • Chapman PJ (1976) Microbial degradation of halogenated compounds. Biochem. Soc. Trans. 4: 463–466

    Google Scholar 

  • Chapman PJ (1979) Degradation mechanisms. In: Bourquin AW & Pritchard PH (Eds) Proceedings of the Workshop: Microbial Degradation of Pollutants in Marine Environments (pp 28–66). U.S. Environmental Protection Agency, Gulf Breeze, FL

    Google Scholar 

  • Chatterjee DK & Chakrabarty AM (1982) Genetic rearrangements in plasmids specifying total degradation of chlorinated benzoic acids. Mol. Gen. Genet. 188: 279–285

    Google Scholar 

  • Chatterjee DK & Chakrabarty AM (1983) Genetic homology between independently isolated chlorobenzoate-degradative plasmids. J. Bacteriol. 153: 532–534

    Google Scholar 

  • Chatterjee DK & Chakrabarty AM (1984) Restriction mapping of a chlorobenzoate degradative plasmid and molecular cloning of the degradative genes. Gene 27: 173–181

    Google Scholar 

  • Chatterjee DK, Kellogg ST, Hamada S & Chakrabarty AM (1981) Plasmid specifying total degradation of 3-chlorobenzoate by a modifiedortho pathway. J. Bacteriol. 146: 639–646

    Google Scholar 

  • Chaudhry GR & Huang GH (1988) Isolation and characterization of a new plasmid from aFlavobacterium sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate. J. Bacteriol. 170: 3897–3902

    Google Scholar 

  • Cheah E, Ashley GW, Gary J & Ollis D (1993a) Catalysis by dienelactone hydrolase: a variation on the protease mechanism. Proteins Struct. Funct. Genet. 16: 64–78

    Google Scholar 

  • Cheah E, Austin C, Ashley GW & Ollis D (1993b) Substrate-induced activation of dienelactone hydrolase: an enzyme with a naturally occurring Cys-His-Asp triad. Protein Eng. 6: 575–583

    Google Scholar 

  • Coco WM, Sangodkar UMX, Rothmel RK & Chakrabarty AM (1990) Recruitment oftft andclc biodegradative pathway genes: modes of evolution. In: Kamely D, Chakrabarty A & Omenn GS (Eds) Biotechnology and Biodegradation. Advances in Applied Biotechnology Series, Vol 4 (pp 43–58). Portfolio Publishing Comp., The Woodlands, and Gulf Publishing Comp., Houston/London/Paris/Zurich/Tokyo

    Google Scholar 

  • Coco WM, Rothmel RK, Henikoff S & Chakrabarty AM (1993) Nucleotide sequence and initial functional characterization of theclcR gene encoding a LysR family activator of theclcABD chlorocatechol operon inPseudomonas putida. J. Bacteriol. 175: 417–427

    Google Scholar 

  • Dagley S (1978) Pathways for the utilization of organic growth substrates. In: Ornston LN & Sokatch JR (Eds) The Bacteria, Vol 6 (pp 305–388). Academic Press, Inc., New York/San Francisco/London

    Google Scholar 

  • Dagley S (1986) Biochemistry of aromatic hydrocarbondegradation in pseudomonads. In: Sokatch JR (Ed) The Bacteria, Vol 10 (pp 527–555). Academic Press, Inc., Orlando/San Diego/New York/Austin/Boston/London/Sydney/Tokyo/Toronto

    Google Scholar 

  • De Bont JAM, Vorage MJAW, Hartmans S & Van den Tweel WJJ (1986) Microbial degradation of 1,3-dichlorobenzene. Appl. Environ. Microbiol. 52: 677–680

    Google Scholar 

  • De Jong E, Field JA, Spinnler H-E, Wijnberg JBPA & De Bont JAM (1994) Significant biogenesis of chlorinated aromatics by fungi in natural environments. Appl. Environ. Microbiol. 60: 264–270

    Google Scholar 

  • Derewenda ZS & Sharp AM (1993) News from the interface: the molecular structures of triacylglyceride lipases. Trends Biochem. Sci. 18: 20–25

    Google Scholar 

  • DiGeronimo MJ, Nikaido M & Alexander M (1979) Utilization of chlorobenzoates by microbial populations in sewage. Appl. Environ. Microbiol. 37: 619–625

    Google Scholar 

  • Don RH, Weightman AJ, Knackmuss H-J & Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate inAlcaligenes eutrophus JMP134 (pJP4). J. Bacteriol. 161: 85–90

    Google Scholar 

  • Dorn E & Knackmuss H-J (1978a) Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem. J. 174: 73–84

    Google Scholar 

  • Dorn E & Knackmuss H-J (1978b) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem. J. 174: 85–94

    Google Scholar 

  • Dorn E, Hellwig M, Reineke W & Knackmuss H-J (1974) Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch. Microbiol. 99: 61–70

    Google Scholar 

  • Drake JW (1991a) A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. Sci. USA 88: 7160–7164

    Google Scholar 

  • Drake JW (1991b) Spontaneous mutation. Annu. Rev. Genet. 25: 125–146

    Google Scholar 

  • Duxbury JM, Tiedje JM, Alexander M & Dawson JE (1970) 2,4-D metabolism: enzymatic conversion of chloromaleylacetic acid to succinic acid. J. Agric. Food Chem. 18: 199–201

    Google Scholar 

  • Eberhard WG (1990) Evolution in bacterial plasmids and levels of selection. Q. Rev. Biol. 65: 3–22

    Google Scholar 

  • Echols H & Goodman MF (1991) Fidelity mechanisms in DNA replication. Annu. Rev. Biochem. 60: 477–511

    Google Scholar 

  • Eck R & Belter J (1993) Cloning and characterization of a gene coding for the catechol 1,2-dioxygenase ofArthrobacter sp. mA3. Gene 123: 87–92

    Google Scholar 

  • Engesser KH & Fischer P (1991) Degradation of haloaromatic compounds. In: Betts WB (Ed) Biodegradation: Natural and Synthetic Materials (pp 15–54). Springer-Verlag, London/Berlin/Heidelberg/New York/Paris/Tokyo/Hong Kong/Barcelona/Budapest

    Google Scholar 

  • Evans WC, Smith BSW, Moss P & Fernley HN (1971a) Bacterial metabolism of 4-chlorophenoxyacetate. Biochem. J. 122: 509–517

    Google Scholar 

  • Evans WC, Smith BSW, Fernley HN & Davies JI (1971b) Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem. J. 122: 543–551

    Google Scholar 

  • Faulkner DJ (1980) Natural organohalogen compounds. In: Hutzinger O (Ed) The Handbook of Environmental Chemistry, Vol 1, Part A, The Natural Environment and the Biogeochemical Cycles (pp 229–254). Springer-Verlag, Berlin/Heidelberg/New York

    Google Scholar 

  • Fava F, DiGioia D, Romagnoli C, Marchetti L & Mares D (1993) Biosynthesis and cytoplasmic accumulation of a chlorinated catechol pigment during 3-chlorobenzoate aerobic co-metabolism inPseudomonas fluorescens. Arch. Microbiol. 160: 350–357

    Google Scholar 

  • Fenical W (1981) Natural halogenated organics. In: Duursma EK & Dawson R (Eds) Marine Organic Chemistry (pp 375–393). Elsevier Scientific Publishing Company, Amsterdam/Oxford/New York

    Google Scholar 

  • Fisher PR, Appleton J & Pemberton JM (1978) Isolation and characterization of the pesticide-degrading plasmid pJP1 fromAlcaligenes paradoxus. J. Bacteriol. 135: 798–804

    Google Scholar 

  • Foster PL (1993) Adaptive mutation: the uses of adversity. Annu. Rev. Microbiol. 47: 467–504

    Google Scholar 

  • Frantz B & Chakrabarty AM (1987) Organization and nucleotide sequence determination of a gene cluster involved in 3-chlorocatechol degradation. Proc. Natl. Acad. Sci. USA 84: 4460–4464

    Google Scholar 

  • Frantz B, Ngai K-L, Chatterjee DK, Ornston LN & Chakrabarty AM (1987) Nucleotide sequence and expression ofclcD, a plasmid-borne dienelactone hydrolase gene fromPseudomonas sp. strain B13. J. Bacteriol. 169: 704–709

    Google Scholar 

  • Garnier J, Osguthorpe DJ & Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120: 97–120

    Google Scholar 

  • Gaunt JK & Evans WC (1971a) Metabolism of 4-chloro-2-methylphenoxyacetate by a soil pseudomonad. Preliminary evidence for the metabolic pathway. Biochem. J. 122: 519–526

    Google Scholar 

  • Gaunt JK & Evans WC (1971b) Metabolism of 4-chloro-2-methylphenoxyacetate by a soil pseudomonad, Ring-fission, lactonizing and delactonizing enzymes. Biochem. J. 122: 533–542

    Google Scholar 

  • Ghosal D & You I-S (1988) Nucleotide homology and organization of chlorocatechol oxidation genes of plasmids pJP4 and pAC27. Mol. Gen. Genet. 211: 113–120

    Google Scholar 

  • Ghosal D & You I-S (1989) Operon structure and nucleotide homology of the chlorocatechol oxidation genes of plasmids pJP4 and pAC27. Gene 83: 225–232

    Google Scholar 

  • Ghosal D, You I-S, Chatterjee DK & Chakrabarty AM (1985) Microbial degradation of halogenated compounds. Science 228: 135–142

    Google Scholar 

  • Gorlatov SN, Maltseva OV, Shevchenko VI & Golovleva LA (1989) Degradation of chlorphenols by a culture ofRhodococcus erythropolis. Mikrobiologiya 58: 802–806. Microbiology 58: 647–651

    Google Scholar 

  • Gottschalk G & Knackmuss H-J (1993) Bacteria and the biodegradation of chemicals achieved naturally, by combination, or by construction. Angew. Chem. Int. Ed. Engl. 32: 1398–1408

    Google Scholar 

  • Gribble GW (1992) Naturally occurring organohalogen compounds — a survey. J. Nat. Prod. 55: 1353–1395

    Google Scholar 

  • Grischenkov VG, Fedechkina IE, Baskunov BP, Anismova LA, Bornin AM & Golovleva LA (1983) Degradation of 3-chlorobenzoic acid by aPseudomonas putida strain. Mikrobiologiya 52: 771–776. Microbiology 52: 602–606

    Google Scholar 

  • Hager LP (1982) Mother nature likes some halogenated compounds. In: Hollaender A, DeMoss RD, Kaplan S, Konisky J, Savage D & Wolfe RS (Eds) Genetic Engineering of Microorganisms for Chemicals (pp 415–429). Plenum Publishing Corporation, New York/London

    Google Scholar 

  • Häggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol. Rev. 103: 29–72

    Google Scholar 

  • Haigler BE & Spain JC (1989) Degradation ofp-chlorotoluene by a mutant ofPseudomonas sp. strain JS6. Appl. Environ. Microbiol. 55: 372–379

    Google Scholar 

  • Haigler BE, Nishino SF & Spain JC (1988) Degradation of 1,2-dichlorobenzene by aPseudomonas sp. Appl. Environ. Microbiol. 54: 294–301

    Google Scholar 

  • Hall BG (1990) Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics 126: 5–16

    Google Scholar 

  • Haller HD & Finn RK (1979) Biodegradation of 3-chlorobenzoate and formation of black color in the presence and absence of benzoate. Eur. J. Appl. Microbiol. Biotechnol. 8: 191–205

    Google Scholar 

  • Harayama S & Rekik M (1993) Comparison of the nucleotide sequences of themeta-cleavage pathway genes of TOL plasmid pWW0 fromPseudomonas putida with othermeta-cleavage genes suggests that both single and multiple nucleotide substitutions contribute to enzyme evolution. Mol. Gen. Genet. 239: 81–89

    Google Scholar 

  • Harayama S, Rekik M, Wasserfallen A & Bairoch A (1987) Evolutionary relationships between catabolic pathways for aromatics: conservation of gene order and nucleotide sequences of catechol oxidation genes of pWW0 and NAH7 plasmids. Mol. Gen. Genet. 210: 241–247

    Google Scholar 

  • Harker AR, Olsen RH & Seidler RJ (1989) Phenoxyacetic acid degradation by the 2,4-dichlorophenoxyacetic acid (TFD) pathway of plasmid pJP4: mapping and characterization of the TFD regulatory gene,tfdR. J. Bacteriol. 171: 314–320

    Google Scholar 

  • Hartmann J, Reineke W & Knackmuss H-J (1979) Metabolism of 3-chloro, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad. Appl. Environ. Microbiol. 37: 421–428

    Google Scholar 

  • Hartmann J, Engelberts K, Nordhaus B, Schmidt E & Reineke W (1989) Degradation of 2-chlorobenzoate by in vivo constructed hybrid pseudomonads. FEMS Microbiol. Lett. 61: 17–22

    Google Scholar 

  • Hartnett GB & Ornston LN (1994) Acquisition of apparent DNA slippage structures during extensive evolutionary divergence ofpcaD andcatD genes encoding identical catalytic activities inAcinetobacter calcoaceticus. Gene 142: 23–29

    Google Scholar 

  • Havel J & Reineke W (1991) Total degradation of various chlorobiphenyls by cocultures and in vivo constructed hybrid pseudomonads. FEMS Microbiol. Lett. 78: 163–170

    Google Scholar 

  • Hickey WJ & Focht DD (1990) Degradation of mono-, di-, and trihalogenated benzoic acids byPseudomonas aeruginosa JB2. Appl. Environ. Microbiol. 56: 3842–3850

    Google Scholar 

  • Higgins DG & Sharp PM (1988) Clustal: a package for performing multiple sequence alignment on a microcomputer. Gene 73: 237–244

    Google Scholar 

  • Higgins DG & Sharp PM (1989) Fast and sensitive multiple sequence alignments on a microcomputer. CABIOS 5: 151–153

    Google Scholar 

  • Hinner I, Ornston LN & Schlömann M (1994) Characterization of lactone hydrolase clones fromAlcaligenes eutrophus, obtained by using theAcinetobacter transformation system. Bioengineering 10(2): P414, p 83

    Google Scholar 

  • Hinteregger C, Loidl M & Streichsbier F (1992) Characterization of isofunctional ring-cleaving enzymes in aniline and 3-chloroaniline degradation byPseudomonas acidovorans CA28. FEMS Microbiol. Lett. 97: 261–266

    Google Scholar 

  • Hinteregger C, Ferschl A, Loidl M & Streichsbier F (1993) Metabolism of aniline and 3-chloroaniline inPseudomonas acidovorans CA28: evidence of isofunctional muconate cycloisomerases. J. Basic Microbiol. 33: 301–309

    Google Scholar 

  • Holben WE, Schroeter BM, Calabrese VGM, Olsen RH, Kukor JK, Biederbeck VO, Smith AE & Tiedje JM (1992) Gene probe analysis of soil microbial populations selected by amendment with 2,4-dichlorophenoxyacetic acid. Appl. Environ. Microbiol. 58: 3941–3948

    Google Scholar 

  • Horvath RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol. Rev. 36: 146–155

    Google Scholar 

  • Ikemura T (1981) Correlation between the abundance ofEscherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for theE. coli translational system. J. Mol. Biol. 151: 389–409

    Google Scholar 

  • Janke D & Fritsche W (1985) Nature and significance of microbial cometabolism of xenobiotics. J. Basic Microbiol. 25: 603–619

    Google Scholar 

  • Janke D, Ihn W & Tresselt D (1989) Critical steps in degradation of chloroaromatics by rhodococci. IV. Detailed kinetics of substrate removal and product formation by resting pre-adapted cells. J. Basic Microbiol. 29: 305–314

    Google Scholar 

  • Johnson BF & Stanier RY (1971) Regulation of the β-ketoadipate pathway inAlcaligenes eutrophus. J. Bacteriol. 107: 476–485

    Google Scholar 

  • Jukes TH (1980) Silent nucleotide substitutions and the molecular evolutionary clock. Science 210: 973–978

    Google Scholar 

  • Kaphammer B, Kukor JJ & Olsen RH (1990) Regulation oftfdCDEF bytfdR of the 2,4-dichlorophenoxyacetic acid degradation plasmid pJP4. J. Bacteriol. 172: 2280–2286

    Google Scholar 

  • Kaschabek SR & Reineke W (1992) Maleylacetate reductase ofPseudomonas sp. strain B13: dechlorination of chloromaleylacetates, metabolites in the degradation of chloroaromatic compounds. Arch. Microbiol. 158: 412–417

    Google Scholar 

  • Kawasaki H, Tsuda K, Matsushita I & Tonomura K (1992) Lack of homology between two haloacetate dehalogenase genes encoded on a plasmid fromMoraxella sp. strain B. J. Gen. Microbiol. 138: 1317–1323

    Google Scholar 

  • Kilpi S, Backström V & Korhola M (1983) Degradation of catechol, methylcatechols and chlorocatechols byPseudomonas sp. HV3. FEMS Microbiol. Lett. 18: 1–5

    Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature (London) 217: 624–626

    Google Scholar 

  • Kimura M (1977) Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature (London) 267: 275–276

    Google Scholar 

  • Kimura M (1991) Recent development of the neutral theory viewed from the Wrightian tradition of theoretical population genetics. Proc. Natl. Acad. Sci. USA 88: 5969–5973

    Google Scholar 

  • Kimura M & Ohta T (1972) On the stochastic model for estimation of mutational distance between homologous proteins. J. Mol. Evol. 2: 87–90

    Google Scholar 

  • King JL & Jukes TH (1969) Non-Darwinian evolution. Science 164: 788–798

    Google Scholar 

  • Kivisaar M, Kasak L & Nurk A (1991) Sequence of the plasmidencoded catechol 1,2-dioxygenase-expressing gene,pheB, of phenol-degradingPseudomonas sp. strain EST1001. Gene 98: 15–20

    Google Scholar 

  • Knaekmuss H-J (1983) Xenobiotic degradation in industrial sewage: haloaromatics as target substrates. Biochem. Soc. Symp. 48: 173–190

    Google Scholar 

  • Knackmuss H-J (1984) Biochemistry and practical implications of organohalide degradation. In: Klug MJ & Reddy CA (Eds) Current Perspectives in Microbial Ecology (pp 687–693). American Society for Micriobiology, Washington, DC

    Google Scholar 

  • Knackmuss H-J & Hellwig M (1978) Utilization and cooxidation of chlorinated phenols byPseudomonas sp. B 13. Arch. Microbiol. 117: 1–7

    Google Scholar 

  • Koch AL (1993) Genetic response of microbes to extreme challenges. J. Theor. Biol. 160: 1–21

    Google Scholar 

  • Kuhm AE, Schlömann M, Knackmuss H-J & Pieper DH (1990) Purification and characterization of dichloromuconate cycloisomerase fromAlcaligenes eutrophus JMP134. Biochem. J. 266: 877–883

    Google Scholar 

  • Kukor JJ, Olsen RH & Siak J-S (1989) Recruitment of a chromosomally encoded maleylacetate reductase for degradation of 2,4-dichlorophenoxyacetic acid by plasmid pJP4. J. Bacteriol. 171: 3385–3390

    Google Scholar 

  • Latorre J, Reineke W & Knackmuss H-J (1984) Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange. Arch. Microbiol. 140: 159–165

    Google Scholar 

  • Lawrence JG, Hartl DL & Ochman H (1991) Molecular considerations in the evolution of bacterial genes. J. Mol. Evol. 33: 241–250

    Google Scholar 

  • Loidl M, Hinteregger C, Ditzelmüller G, Ferschl A & Streichsbier F (1990) Degradation of aniline and monochlorinated anilines by soil-bornPseudomonas acidovorans strains. Arch. Microbiol. 155: 56–61

    Google Scholar 

  • MacPhee DG (1993) Directed mutations: a critical analysis. ASM News 59: 297–299

    Google Scholar 

  • Mäe AA, Marits RE, Ausmees NR, Kôiv VM & Heinaru AL (1993) Characterization of a new 2,4-dichlorophenoxyacetic acid degrading plasmid pEST4011: physical map and localization of catabolic genes. J. Gen. Microbiol. 139: 3165–3170

    Google Scholar 

  • Maltseva OV, Solyanikova IP & Golovleva LA (1991) Catechol 1,2-dioxygenases of a chlorophenol-degrading strain ofRhodococcus erythropolis: purification and properties. Biokhimiya 56: 2188–2197. Biochemistry 56: 1548–1555

    Google Scholar 

  • Miguez CB, Greer CW & Ingram JM (1990) Degradation of mono-and dichlorobenzoic acid isomers by two natural isolates ofAlcaligenes denitrificans. Arch. Microbiol. 154: 139–143

    Google Scholar 

  • Miguez CB, Greer CW & Ingram JM (1993) Purification and properties of chlorocatechol 1,2-dioxygenase fromAlcaligenes denitrificans BRI 6011. Can. J. Microbiol. 39: 1–5

    Google Scholar 

  • Mittler JE & Lenski RE (1990) New data on excisions of Mu fromE. coli MCS2 cast doubt on directed mutation hypothesis. Nature (London) 344: 173–175

    Google Scholar 

  • Miyata T & Hayashida H (1981) Extraordinarily high evolutionary rate of pseudogenes: evidence for the presence of selective pressure against changes between synonymous codons. Proc. Natl. Acad. Sci. USA 78: 5739–5743

    Google Scholar 

  • Miyata T, Yasunaga T & Nishida T (1980) Nucleotide sequence divergence and functional constraint in mRNA evolution. Proc. Natl. Acad. Sci. USA 77: 7328–7332

    Google Scholar 

  • Miyata T, Hayashida H, Kikuno R, Hasegawa M, Kobayashi M & Koike K (1982) Molecular clock of silent substitution: at least six-fold preponderance of silent changes in mitochondrial genes over those in nuclear genes. J. Mol. Evol. 19: 28–35

    Google Scholar 

  • Mokross H, Schmidt E & Reineke W (1990) Degradation of 3-chlorobiphenyl by in vivo constructed hybrid pseudomonads. FEMS Microbiol. Lett. 71: 179–186

    Google Scholar 

  • Myers EW & Miller W (1988) Optimal alignments in linear space. CABIOS 4: 11–17

    Google Scholar 

  • Naumann K (1993) Chlorchemie der Natur. Chemie in uns. Zeit 27: 33–41

    Google Scholar 

  • Neidle EL, Hartnett C, Bonitz S & Ornston LN (1988) DNA sequence of theAcinetobacter calcoaceticus catechol 1,2-dioxygenase I structural genecatA: evidence for evolutionary divergence of intradiol dioxygenases by acquisition of DNA sequence repetitions. J. Bacteriol. 170: 4874–4880

    Google Scholar 

  • Neidle EL, Hartnett C & Ornston LN (1989) Characterization ofAcinetobacter calcoaceticus catM, a repressor gene hornologous in sequence to transcriptional activator genes. J. Bacteriol. 171: 5410–5421

    Google Scholar 

  • Neidleman SL & Geigert J (1986) Biohalogenation: Principles, Basic Roles and Applications. Ellis Horwood Ltd., Chichester, and John Wiley & Sons, New York/Chichester/Brisbane/Toronto

    Google Scholar 

  • Neilson AH, Allard A-S & Remberger M (1985) Biodegradation and transformation of recalcitrant compounds. In: Hutzinger O (Ed) Reactions and Processes. The Handbook of Environmental Chemistry, Vol 2, Part C (pp 29–86). Springer-Verlag, Berlin/Heidelberg/New York/Tokyo

    Google Scholar 

  • Ngai K-L & Ornston LN (1988) Abundant expression ofPseudomonas genes for chlorocatechol metabolism. J. Bacteriol. 170: 2412–2413

    Google Scholar 

  • Ngai K-L, Schlömann M, Knackmuss H-J & Ornston LN (1987) Dienelactone hydrolase fromPseudomonas sp. strain B13. J. Bacteriol. 169: 699–703

    Google Scholar 

  • Ochman H & Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J. Mol. Evol. 26: 74–86

    Google Scholar 

  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG & Goldman A (1992) The α/β hydrolase fold. Protein Eng. 5: 197–211

    Google Scholar 

  • Ornston LN (1966) The conversion of catechol and protocatechuate to β-ketoadipate byPseudomonas putida. II. Enzymes of the protocatechuate pathway. J. Biol. Chem. 241: 3787–3794

    Google Scholar 

  • Ornston LN, Houghton J, Neidle EL & Gregg LA (1990) Subtle selection and novel mutation during evolutionary divergence of the β-ketoadipate pathway. In: Silver S, Chakrabarty AM, Iglewski B & Kaplan S (Eds),Pseudomonas. Biotransformations, Pathogenesis, and Evolving Biotechnology (pp 207–225). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Pathak D & Ollis D (1990) Refined structure of dienelactone hydrolase at 1.8 Å. J. Mol. Biol. 214: 497–525

    Google Scholar 

  • Pathak D, Ngai KL & Ollis D (1988) X-ray crystallographic structure of dienelactone hydrolase at 2.8 Å. J. Mol. Biol. 204: 435–445

    Google Scholar 

  • Pathak D, Ashley G & Ollis D (1991) Thiol protease-like active site found in the enzyme dienelactone hydrolase: localization using biochemical, genetic, and structural tools. Proteins Struct. Funct. Genet. 9: 267–279

    Google Scholar 

  • Pearson WR & Lipman DJ (1988) Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444–2448

    Google Scholar 

  • Pemberton JM, Corney B & Don RH (1979) Evolution and spread of pesticide degrading ability among soil micro-organisms. In: Timmis KN & Pühler A (Eds) Plasmids of Medical, Environmental and Commercial Importance (pp 287–299). Elsevier/North Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Perkins EJ, Gordon MP, Caceres O & Lurquin PF (1990) Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J. Bacteriol. 172: 2351–2359

    Google Scholar 

  • Pieper DH, Reineke W, Engesser K-H & Knackmuss H-J (1988) Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid byAlcaligenes eutrophus JMP 134. Arch. Microbiol. 150: 95–102

    Google Scholar 

  • Pieper DH, Engesser K-H & Knackmuss H-J (1989) Regulation of catabolic pathways of phenoxyacetic acids and phenols inAlcaligenes eutrophus JMP 134. Arch. Microbiol. 151: 365–371

    Google Scholar 

  • Pierce GE, Facklam TJ & Rice JM (1981) Isolation and characterization of plasmids from environmental strains of bacteria capable of degrading the herbicide 2,4-D. Dev. Ind. Microbiol. 22: 401–408

    Google Scholar 

  • Reineke W (1984) Microbial degradation of halogenated aromatic compounds. In: Gibson DT (Ed) Microbial Degradation of Organic Compounds (pp 319–360). Marcel Dekker, Inc., New York/Basel

    Google Scholar 

  • Reineke W & Knackmuss H-J (1978a) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid. Biochim. Biophys. Acta 542: 412–423

    Google Scholar 

  • Reineke W & Knackmuss H-J (1978b) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on dehydrogenation of 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid. Biochim. Biophys. Acta 542: 424–429

    Google Scholar 

  • Reineke W & Knackmuss H-J (1984) Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl. Environ. Microbiol. 47: 395–402

    Google Scholar 

  • Reineke W, Wessels SW, Rubio MA, Latorre J, Schwien U, Schmidt E, Schlömann M & Knackmuss H-J (1982) Degradation of monochlorinated aromatics following transfer of genes encoding chlorocatechol catabolism. FEMS Microbiol. Lett. 14: 291–294

    Google Scholar 

  • Rey A, Erdmann D, Wilkes H, Wittich R-M, Francke W & Fortnagel P (1992) Degradation of dichlorotoluenes by strainPseudomonas sp. PS12. Bioengineering 8: P319, p 64

    Google Scholar 

  • Rothmel RK, Aldrich TL, Houghton JE, Coco WM, Ornston LN & Chakrabarty AM (1990) Nucleotide sequencing and characterization ofPseudomonas putida catR: a positive regulator of thecatBC operon is a member of the LysR family. J. Bacteriol. 172: 922–931

    Google Scholar 

  • Rubio MA, Engesser K-H & Knackmuss H-J (1986) Microbial metabolism of chlorosalicylates: accelerated evolution by natural genetic exchange. Arch. Microbiol. 145: 116–122

    Google Scholar 

  • Sander P, Wittich R-M, Fortnagel P, Wilkes H & Francke W (1991) Degradation of 1,2,4-trichlor- and 1,2,4,5-tetrachlorobenzene byPseudomonas strains. Appl. Environ. Microbiol. 57: 1430–1440

    Google Scholar 

  • Schell U, Seibert V, Vollmer M & Schlömann M (1994) TfdF — a second, plasmid-encoded maleylacetate reductase ofAlcaligenes eutrophus JMP134 (pJP4). Bioengineering 10(2): P413, p 83

    Google Scholar 

  • Schindowski A, Wittich R-M & Fortnagel P (1991) Catabolism of 3,5-dichlorosalicylate byPseudomonas species strain JWS. FEMS Microbiol. Lett. 84: 63–70

    Google Scholar 

  • Schlömann M (1982) Charakterisierung der 4-Carboxymethylenbut-2-en-4-olid-Hydrolase-Aktivität in 4-Fluorbenzoat verwertenden Stämmen vonAlcaligenes eutrophus. Eiplomarbeit, Universität Göttingen

  • Schlömann M (1988) Die verschiedenen Typen der Dienlacton-Hydrolase und ihre Rolle beim bakteriellen Abbau von 4-Fluorbenzoat. Ph.D. Thesis, Universität Stuttgart

  • Schlömann M (1992) Enzyme und Gene des Abbaus mono- und dichlorsubstituierter Brenzkatechine. Woher kommt ein neuer Abbauweg? In: Weigert B (Ed) Schriftenreihe Biologische Abwasserreinigung 1. Biologischer Abbau von Chlorkohlenwasserstoffen (pp 87–109). Technische Universität Berlin, Berlin

    Google Scholar 

  • SchlÖmann M, Schmidt E & Knackmuss H-J (1990a) Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J. Bacteriol. 172: 5112–5118

    Google Scholar 

  • Schlömann M, Fischer P, Schmidt E & Knackmuss H-J (1990b) Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate. J. Bacteriol. 172: 5119–5129

    Google Scholar 

  • Schlömann M, Hartnett GB & Ornston LN (1991) Use of theAcinetobacter transformation system for the cloning of degradative genes fromAlcaligenes eutrophus. In: Book of Abstracts.Pseudomonas 1991 (p 222). Third International Symposium on Pseudomonads Biology and Biotechnology. Trieste, 16–20 June 1991

  • Schlömann M, Ngai K-L, Ornston LN & Knackmuss H-J (1993) Dienelactone hydrolase fromPseudomonas cepacia. J. Bacteriol. 175: 2994–3001

    Google Scholar 

  • Schmidt E & Knackmuss H-J (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into malcoylacetic acid. Biochem. J. 192: 339–347

    Google Scholar 

  • Schmidt S, Wittich R-M, Erdmann D, Wilkes H, Francke W & Fortnagel P (1992) Biodegradation of diphenyl ether and its monohalogenated derivatives bySphingomonas sp. strain SS3. Appl. Environ. Microbiol. 58: 2744–2750

    Google Scholar 

  • Schmidt S, Fortnagel P & Wittich R-M (1993) Biodegradation and transformation of 4,4′- and 2,4-dihalodiphenyl ethers bySphingomonas sp. strain SS33. Appl. Environ. Microbiol. 59: 3931–3933

    Google Scholar 

  • Schraa G, Boone ML, Jetten MSM, Van Neerven ARW, Colberg PJ & Zehnder AJB (1986) Degradation of 1,4-dichlorobenzene byAlcaligenes sp. strain A175. Appl. Environ. Microbiol. 52: 1374–1381

    Google Scholar 

  • Seibert V, Stadler-Fritzsche K & Schlömann M (1993) Purification and characterization of maleylacetate reductase fromAlcaligenes eutrophus JMP134 (pJP4). J. Bacteriol. 175: 6745–6754

    Google Scholar 

  • Shanley MS, Harrison A, Parales RE, Kowalchuk G, Mitchell DJ & Ornston LN (1994) Unusual G+C content and codon usage incatIJF, a segment of theben-cat supra-operonic cluster in theAcinetobacter calcoaceticus chromosome. Gene 138: 59–65

    Google Scholar 

  • Sharp PM, Shields DC, Wolfe KH & Li WH (1989) Chromosomal location and evolutionary rate variation in enterobacterial genes. Science 246: 808–810

    Google Scholar 

  • Sharpee KW, Duxbury JM & Alexander M (1973) 2,4-Dichlorophenoxyacetate metabolism byArthrobacter sp.: accumulation of a chlorobutenolide. Appl. Microbiol. 26: 445–447

    Google Scholar 

  • Slater JH & Lovatt D (1984) Biodegradation and the significance of microbial communities. In: Gibson DT (Ed) Microbial Degradation of Organic Compounds (pp 439–485). Marcel Dekker, Inc., New York/Basel

    Google Scholar 

  • Solyanikova IP, Maltseva OV & Golovleva LA (1992) Purification and properties of catechol 1,2-dioxygenase II fromPseudomonas putida strain 87. Biokhimiya 57: 1883–1991. Biochemistry 57: 1310–1316

    Google Scholar 

  • Solyanikova I, Maltseva O, Vollmer MD, Golovleva L & Schlömann M (1993) Chloromuconate cycloisomerase fromRhodococcus erythropolis 1CP, an intermediate stage in the adaptation for chlorosubstituted substrates. Bioengineering 9(2): P210, p 50

    Google Scholar 

  • Solyanikova I, Vollmer MD, Maltseva O, Golovleva L & Schlömann M (1994) Muconate cycloisomerase ofRhodococcus erythropolis 1CP and its contributions to an evolutionary puzzle. Bioengineering 10(2): P410, p 82

    Google Scholar 

  • Spain JC & Nishino SF (1987) Degradation of 1,4-dichlorobenzene by aPseudomonas sp. Appl. Environ. Microbiol. 53: 1010–1019

    Google Scholar 

  • Spain JC & Gibson DT (1988) Oxidation of substituted phenols byPseudomonas putida F1 andPseudomonas sp. strain JS6. Appl. Environ. Microbiol. 54: 1399–1404

    Google Scholar 

  • Stanier RY & Ornston LN (1973) The β-ketoadipate pathway. Adv. Microb. Physiol. 9: 89–151

    Google Scholar 

  • Strunz GM (1984) Microbial chlorine-containing metabolites. In: Laskin AI & Lechevalier HA (Eds) CRC Handbook of Microbiology, 2nd Ed, Vol V, Microbial Products (pp 749–773). CRC Press, Boca Raton, FL.

    Google Scholar 

  • Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc. Natl. Acad. Sci. USA 85: 2653–2657

    Google Scholar 

  • Surovtseva EG, Ivoilov VS & Karasevich YuN (1986) Metabolism of chlorinated anilines byPseudomonas diminuta. Mikrobiologiya 55: 591–595. Microbiology 55: 459–463

    Google Scholar 

  • Takahata N & Kimura M (1981) A model of evolutionary base substitutions and its application with special reference to rapid change of pseudogenes. Genetics 98: 641–657

    Google Scholar 

  • Tiedje JM, Duxbury JM, Alexander M & Dawson JE (1969) 2,4-D metabolism: pathway of degradation of chlorocatechols byArthrobacter sp. J. Agric. Food Chem. 17: 1021–1026

    Google Scholar 

  • Van der Meer JR, Roelofsen W, Schraa G & Zehnder AJB (1987) Degradation of low concentrations of dichlorobenzenes and 1,2,4-trichlorobenzene byPseudomonas sp. strain P51 in nonsterile soil columns. FEMS Microbiol. Ecol. 45: 333–341

    Google Scholar 

  • Van der Meer JR, Van Neerven ARW, De Vries EJ, De Vos WM & Zehnder AJB (1991a) Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene ofPseudomonas sp. strain P51. J. Bacteriol. 173: 6–15

    Google Scholar 

  • Van der Meer JR, Eggen RIL, Zehnder AJB & De Vos WM (1991b) Sequence analysis of thePseudomonas sp. strain P51tcb gene cluster, which encodes metabolism of chlorinated catechols: envidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. J. Bacteriol. 173: 2425–2434

    Google Scholar 

  • Van der Meer JR, Frijters ACJ, Leveau JHJ, Eggen RIL, Zehnder AJB & De Vos WM (1991c) Characterization of thePseudomonas sp. strain P51 genetcbR, a LysR-type transcriptional activator of thetcbCDEF chlorocatechol oxidative operon, and analysis of the regulatory region. J. Bacteriol. 173: 3700–3708

    Google Scholar 

  • Van der Meer JR, De Vos WM, Harayama S & Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56: 677–694

    Google Scholar 

  • Vandenbergh PA, Olsen RH & Colaruotolo JF (1981) Isolation and genetic characterization of bacteria that degrade chloroaromatic compounds. Appl. Environ. Microbiol. 42: 737–739

    Google Scholar 

  • Vollmer MD & Schlömann M (1994) Chloromuconate cycloisomerases: relatively specific enzymes with a distinct preference for substituted muconates. Bioengineering 10(2): P415, p 83

    Google Scholar 

  • Vollmer MD, Stadler-Fritzsche K & Schlömann M (1993) Conversion of 2-chloromaleylacetate inAlcaligenes eutrophus JMP134. Arch. Microbiol. 159: 182–188

    Google Scholar 

  • Vollmer MD, Fischer P, Knackmuss HJ & Schlömann M (1994) Inability of muconate cycloisomerases to cause dehalogenation during conversion of 2-chloro-cis, cis-muconate. J. Bacteriol. 176: 4366–4375

    Google Scholar 

  • Weisshaar M-P, Franklin FCH & Reineke W (1987) Molecular cloning and expression of the 3-chlorobenzoate-degrading genes fromPseudomonas sp. strain B13. J. Bacteriol. 169: 394–402

    Google Scholar 

  • Wittich RM (1992) Physiological limits in aerobic degradation of halogenated dibenzo-furans and dibenzo-p-dioxins. Poster at the Meeting: Bioinorganic and Biotechnological Aspects of Environmental Chemistry. Florence, August 23–29, 1992

  • Yeh W-K & Ornston LN (1984)p-Chloromercurbenzoate specifically modifies thiols associated with the active sites of β-ketoadipate enol-lactone hydrolase and succinyl CoA:β-ketoadipate CoA transferase. Arch. Microbiol. 138: 102–105

    Google Scholar 

  • You I-S (1992) Regulation of plasmid-borne 2,4-dichlorophenoxyacetate catabolic genes involves multiple regulatory genes. Abstr. 92nd Annu. Meet. Am. Soc. Microbiol. H-118, p 202

  • Zeyer J, Wasserfallen A & Timmis KN (1985) Microbial mineralization of ring-substituted anilines through anortho-cleavage pathway. Appl. Environ. Microbiol. 50: 447–453

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlömann, M. Evolution of chlorocatechol catabolic pathways. Biodegradation 5, 301–321 (1994). https://doi.org/10.1007/BF00696467

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696467

Key words

Navigation