Skip to main content

Advertisement

Log in

Molecular genetics of methane oxidation

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Biological methane oxidation is carried out by methanotrophs, bacteria that utilize methane as their sole carbon and energy source. The enzyme they contain that is responsible for methane oxidation is methane monooxygenase, the most well studied being the soluble methane monooxygenase enzyme complexes fromMethylococcus capsulatus (Bath) andMethylosinus trichosporium OB3b. In both organisms, the genes encoding soluble methane monooxygenase have been found to be clustered on the chromosome in the ordermmoX, mmoY, mmoB, mmoZ, orfY andmmoC. These genes encode the α and β subunits of Protein A, Protein B, the γ subunit of Protein A, a protein of unknown function and Protein C respectively of the soluble methane monooxygenase complex. The complete DNA sequences of both gene clusters have been determined and they show considerable homology. Expression of soluble methane monooxygenase genes occurs under growth conditions where the copper-to-biomass ratio is low. Transcriptional regulation of the gene cluster fromMethylosinus occurred at an RpoN-like promoter, 5′ of themmoX gene.mmoB andmmoC ofMethylococcus have been expressed inE. coli and the proteins obtained were functionally active. Soluble methane monooxygenase mutants have been constructed by marker-exchange mutagenesis. They were found to be more stable than those generated using the suicide substrate dichloromethane. Soluble methane monooxygenase probes have been used to detect both methane monooxygenase gene-specific DNA and methanotrophs in natural environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akent'eva NF & Gvozdev RI (1988) Purification and physiochemical properties of methane monooxygenase from membrane structures ofMethylococcus capsulatus. Biokhymija 53: 91–96

    Google Scholar 

  • Al-Taho NM, Cornish A & Warner PJ (1990) Molecular cloning of the methanol dehydrogenase structural gene fromMethylosinus trichosporium OB3b. Current Microbiology 20: 153–157

    Google Scholar 

  • Al-Taho NM & Warner PJ (1987) Restoration of phenotype inEscherichia coli auxotrophs by pULB113-mediated mobilisation from methylotrophic bacteria. FEMS Microbiol. Lett. 43: 235–239

    Google Scholar 

  • Alvarez-Cohen L, McCarty PL, Boulygina E, Brusseau G & Hanson RS (1992) Cometabolic biotransformation of trichloroethylene and chloroform by a bacterial consortium grown with methane. Appl. Environ. Microbiol. 58: 1886–1893

    Google Scholar 

  • Alvarez-Cohen L (1993) Application of methanotrophic oxidations for the bioremediation of chlorinated organics. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds (pp 337–350). Intercept Press, Andover, UK

    Google Scholar 

  • Anthony C (1982) The Biochemistry of Methylotrophs. Academic Press, London

    Google Scholar 

  • —— (1986) Bacterial oxidation of methane and methanol. Adv. Micro. Physiol. 27: 113–210

    Google Scholar 

  • Bainbridge BW (1983) The potential of methylotrophic bacteria: genetic approaches to improving bacteria of industrial interest. In: Advances in Fermentation, Conference Proceedings (supplement to Process Biochemistry), (pp 97–107), Wheatland Journals, Rickmansworth, England

    Google Scholar 

  • Barta TM & Hanson RS (1993) Genetic studies of gram-negative methylotrophic bacteria. Antonie van Leeuwenhoek, in press

  • Boulygina ES, Chumakov KM & Netrusov AI (1993) Systematics of gram-negative methylotrophic bacteria based on 5S rRNA sequences. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds, (pp 275–284). Intercept Press, Andover, UK

    Google Scholar 

  • Bowman JP (1992) The systematics of methane-utilizing bacteria. PhD Thesis University of Queensland, Brisbane, Australia

    Google Scholar 

  • Bratina BJ, Brusseau GA & Hanson RS (1992) Use of 16S rRNA analysis to investigate phylogeny of methylotrophic bacteria. Int. J. System. Bacteriol. 42: 645–648

    Google Scholar 

  • Brusseau GA, Bulygina ES & Hanson RS (1994) Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria Appl. Env. Microbiol. 60: 626–636

    Google Scholar 

  • Brusseau GA, Tsien H-G, Hanson RS & Wackett LP (1990) Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation 1: 19–29

    Google Scholar 

  • Bulygina ES, Galchenko VF, Govurakhina NI, Netrusov AI, Nikitin DI, Trotsenko YA & Churnakov KM (1990) Taxonomic studies on methylotrophic bacteria by 5S ribosomal RNA sequencing. J. Gen. Microbiol. 136: 441–146

    Google Scholar 

  • Burrows KJ, Cornish A, Scott D & Higgins IJ (1984) Substrate specificities of the soluble and particulate methane monooxygenase ofMethylosinus trichosporium OB3b. J. Gen. Microbiol. 130: 3327–3333

    Google Scholar 

  • Cardy DLN, Laidler V, Salmond GPC & Murrell JC (1991a) Molecular analysis of the methane monooxygenase (MMO) gene cluster ofMethylosinus trichosporium OB3b. Mol. Microbiol. 5: 355–342

    Google Scholar 

  • ——, (1991b) The methane monooxygenase gene cluster ofMethylosinus trichosporium: cloning and sequencing of themmoC gene. Arch. Microbiol. 156: 477–483

    Google Scholar 

  • Chan SI, Nguyen H-HT, Shiemke AK & Lidstrom ME (1993) Biochemical and biophysical studies towards characterization of the membrane-associated methane monooxygenase. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds (pp 93–107). Intercept Press, Andover, UK

    Google Scholar 

  • Cicerone RJ & Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles 2: 299–327

    Google Scholar 

  • Colby J & Dalton H (1979) Characterization of the second prosthetic group of the flavoenzyme NADH-acceptor reductase (Component C) of the methane monooxygenase fromMethylococcus capsulatus (Bath). Biochem. J. 177: 903–908

    Google Scholar 

  • Dalton H, Wilkins PC & Jiang Y (1993) Structure and mechanism of action of the hydroxylase of soluble methane monooxygenase. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds (pp 65–80). Intercept Press, Andover, UK

    Google Scholar 

  • Dalton H (1992) Methane oxidation by methanotrophs, physiological and mechanistic implications. In: Murrell JC & Dalton H (Eds) Methane and Methanol Utilizers (pp 85–114). Plenum, New York

    Google Scholar 

  • Davidson S (1993) The development of genetic techniques for the obligate methanotrophMethylococcus capsulatus (Bath). PhD Thesis, University of Warwick, Coventry, UK

    Google Scholar 

  • DeWitt JG, Bentsen JG, Rosenzweig AC, Hedman B, Green J, Pilkington S, Papaefthymiou GC, Dalton H, Hodgson KO & Leppard SJ (1991) X-ray absorption, Mossbauer and EPR studies of the dinuclear iron centre in the hydroxylase component of methane monooxygenase. J. Am. Chem. Soc. 113: 9219–9235

    Google Scholar 

  • Dijkhuizen L, Levering PR & Vries GE de (1992) The physiology and biochemistry of aerobic methanol-utilizing gram-negative and gram-positive bacteria. In: Murrell JC & Dalton H (Eds) Methane and Methanol Utilizers (pp 149–181). Plenum Press, New York

    Google Scholar 

  • Fitch MW, Graham DW, Arnold RG, Agarwal SK, Phelps P, Speitel Jr GE & Georgiou G (1993) Phenotypic characterization of copper-resistant mutants ofMethylosinus trichosporium OB3b. Appl. Env. Microbiol. 59: 2771–2776

    Google Scholar 

  • Fox BG, Froland WA, Dege JE & Lipscomb JD (1989) Methane monooxygenase fromMethylosinus trichosporium OB3b. Purification and properties of a three-component system with high specific activity from a type II methanotroph. J. Biol. Chem. 264: 10023–10033

    Google Scholar 

  • Fox BG, Lin Y, Dege JE & Lipscomb JD (1991) Complex formation between the protein components of methane monooxygenase fromMethylosinus trichosporium OB3b, identification of sites of component interaction. J. Biol. Chem. 266: 540–550

    Google Scholar 

  • Fox BG, Surerus KK, Münck E & Lipscomb JD (1988) Evidence for a μ-oxo-bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase. J. Biol. Chem. 263: 10553–10556

    Google Scholar 

  • Froland WA, Andersson KK, Lee S-K, Liu Y & Lipscomb JD (1993) The catalytic cycle of methane monooxygenase and the novel roles played by protein component complexes during turnover. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds (pp 81–92). Intercept Press, Andover, UK

    Google Scholar 

  • Goldberg I & Rokem JS (1991) Biology of Methylotrophs, Butterworth-Heinemann, Boston, USA

    Google Scholar 

  • Graham DW, Korich DG, Le Blanc RP, Sinclair NA & Arnold RG (1992) Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl. Env. Microbiol. 58: 2231–2236

    Google Scholar 

  • Green J & Dalton H (1985) Protein B of soluble methane monooxygenase fromMethylococcus capsulatus (Bath). J. Biol. Chem. 260: 15795–15801

    Google Scholar 

  • Green PN (1992) Taxonomy of methylotrophic bacteria. In: Murrell JC & Dalton H (Eds) Methane and Methanol Utilizers (pp 23–84). Plenum, New York

    Google Scholar 

  • —— (1993) Overview of the current state of methylotroph taxonomy. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds (pp 253–265). Intercept Press, Andover, UK

    Google Scholar 

  • Hanson RS, Netrusov AI & Tsuji K (1991) The obligate methanotrophic bacteriaMethylococcus, Methylomonas, Methylosinus and related bacteria. In: Balows A, Truper HG, Dworkin M, Harder W & Schleifer KH (Eds) The Prokaryotes (pp 271–275). Springer-Verlag, New York

    Google Scholar 

  • Hanson RS, Bratina BJ & Brusseau GA (1993) Phlogeny and ecology of methylotrophic bacteria. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds (pp 285–302) Intercept Press, Andover, UK

    Google Scholar 

  • Hanson RS & Wattenberg EV (1991) Ecology of methylotrophic bacteria. In: Goldberg I & Roken JS (Eds) Biology of methylotrophs (pp 325–348). Butterworth-Heinemann, Boston, USA

    Google Scholar 

  • Harms N (1993) Genetics of methanol oxidation inParacoccus denitrificans. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds (pp 235–244). Intercept Press, Andover, UK

    Google Scholar 

  • Khan QM (1992) Development of molecular genetic tools to analyse regulation in methanotrophs. PhD Thesis, Imperial College, London

    Google Scholar 

  • King GM (1993) Ecophysiological characteristics of obligate methanotrophic bacteria and methane oxidation in situ. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds (pp 303–313). Intercept Press, Andover, UK

    Google Scholar 

  • Koh S-C, Bowman JP & Sayler GS (1993) Soluble methane monooxygenase production and trichloroethylene degradation by a type 1 methanotrophMethylomonas methanica 68-1. Appl. Env. Microbiol. 59: 960–967

    Google Scholar 

  • Kurtz DM & Prickril BC (1991) Intrapeptide sequence homology in rubrerythrin fromDesulfovibrio vulgaris: identification of potential ligands to the diiron site. Biochem. Biophys. Res. Comm. 181: 337–341

    Google Scholar 

  • Leak DJ (1992) Biotechnological and applied aspects of methane and methanol utilizers. In: Murrell JC & Dalton H (Eds) Methane and Methanol Utilizers (pp 245–279). Plenum Press, New York

    Google Scholar 

  • Large PJ & Bamforth CW (1988) Methylotrophy and Biotechnology, Longman, Harlow, UK

    Google Scholar 

  • Lidstrom ME & Stirling DI (1990) Methylotrophs: Genetics and commercial applications. Ann. Rev. Microbiol. 44: 27–58

    Google Scholar 

  • Lidstrom ME, Wopat AE, Nunn DN & Toukdarian AE (1984) Manipulation of methanotrophs. In: Omenn GS & Hollaender A (Eds) Genetic Control of Environmental Pollutants (pp 273–279). Plenum Press, New York

    Google Scholar 

  • Lidstrom ME & Wopat AE (1984) Plasmids in methanotrophic bacteria: isolation, characterization and DNA hybridization analysis. Arch. Microbiol. 140: 27–33

    Google Scholar 

  • Lidstrom ME (1992) The genetic and molecular biology of methanol-utilizing bacteria. In: Murrell JC & Dalton H (Eds) Methane and Methanol Utilizers (pp 183–206). Plenum, New York

    Google Scholar 

  • Lodge J, Williams R, Bell A, Chan B & Busby S (1990) Comparison of promoter activities inEscherichia coli andPseudomonas aeruginosa: use of a new broad-host-range promoter-probe plasmid FEMS Microbiol. Lett. 67: 221–226

    Google Scholar 

  • Lund J & Dalton H (1985) Further investigations of the FAD and Fe2S2 redox centres of component C NADH: acceptor reductase of the soluble methane monooxygenase fromMethylococcus capsulatus (Bath). Eur. J. Biochem. 147: 291–296

    Google Scholar 

  • McPheat WL, Mann NH & Dalton H (1987b) Isolation of mutants of the obligate methanotrophMethylomonas albus defective in growth on methane. Arch. Microbiol. 148: 40–43

    Google Scholar 

  • —— (1987) Transfer of broad host range plasmids to the type I obligate methanotrophMethylomonas albus. FEMS Microbiol. Lett. 41: 185–188

    Google Scholar 

  • Murrell JC, McGowan V & Cardy DLN (1992) Detection of methylotrophic bacteria in natural samples by molecular probing techniques. Chemosphere 26: 1–11

    Google Scholar 

  • Murrell JC (1992) Genetics and molecular biology of methanotrophs. FEMS Microbiol. Rev. 88: 233–248

    Google Scholar 

  • —— (1992a) The genetics and molecular biology of obligate methane-oxidizing bacteria. In: Murrell JC & Dalton H (Eds) The methane and methanol utilizers (pp 115–148). Plenum Press, New York

    Google Scholar 

  • Nakajima T, Uchiyama H, Yagi O & Nakahara T (1992) Purification and properties of a soluble methane monooxygenase fromMethylocystis sp. M. Biosci. Biotech. Biochem. 56: 736–740

    Google Scholar 

  • Nicolaidis AA & Sargent AW (1987) Isolation of methane monooxygenase-deficient mutants fromMethylosinus trichosporium OB3b using dichloromethane. FEMS Microbiol. Lett. 41: 47–52

    Google Scholar 

  • Nordlund P, Sjöberg B-M & Eklund H (1990) Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature 345: 593–598

    Google Scholar 

  • Nordlund P, Dalton H & Eklund H (1992) The active-site structure of methane monooxygenase is closely related to the binuclear iron centre of ribonucleotide reductase FEBS Lett. 307: 257

    Google Scholar 

  • Oldenhuis & Janssen DB (1993) Degradation of trichlorethylene by methanotrophic bacteria. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds (pp 121–133) Intercept Press, Andover, UK

    Google Scholar 

  • Park S, Hanna L, Taylor RT & Droege MW (1991) Batch cultivation ofMethylosinus trichosporium OB3b; 1: production of soluble methane monooxygenase. Biotech. Bioeng. 38: 423–433

    Google Scholar 

  • Park S, Shah NN, Taylor RT & Droege MW (1992) Batch cultivation ofMethylosinus trichosporium OB3b; 11. Production of particulate methane monooxygenase. Biotech. Bioeng. 40: 151–157

    Google Scholar 

  • Phelps PA, Agarmal SK, Speital GE & Georgiou G (1992)Methylosinus trichosporium OB3b mutants having constitutive expression of soluble methane monooxygenase in the presence of high levels of copper. Appl. Env. Microbiol. 58: 3701–3708

    Google Scholar 

  • Pilkington SJ, Salmond GPC, Murrell JC & Dalton H (1990) Identification of the gene encoding the regulatory protein B of soluble methane monooxygenase. FEMS Microbiol. Lett. 77: 345–349

    Google Scholar 

  • Pilkington SJ & Dalton H (1991) Purification and characterization of the soluble methane monooxygenase fromMethylosinus sporium 5 demonstrates the highly conserved nature of this enzyme in methanotrophs. FEMS Micro. Lett. 78: 103–108

    Google Scholar 

  • Reeburgh WS (1993) The role of methylotrophy in the global methane budget. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds (pp 1–14). Intercept Press, Andover, UK

    Google Scholar 

  • Rella M, Mercenier A & Haas D (1985) Transposon insertion mutagenesis ofPseudomonas aeruginosa with a Tn5 derivative: application to physical mapping ofarc gene cluster. Gene 33: 293–303

    Google Scholar 

  • Simon R, Prifer U & Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1: 784–791

    Google Scholar 

  • Smith DDS & Dalton H (1989) Solubilization of methane monooxygenase fromMethylococcus capsulatus (Bath). Eur. J. Biochem. 182: 667–671

    Google Scholar 

  • Stainthorpe AC, Lees V, Salmond GPC, Dalton H & Murrell JC (1990) The methane monooxygenase gene cluster ofMethylococcus capsulatus (Bath). Gene 91: 27–34

    Google Scholar 

  • Stainthorpe AC, Murrell JC, Salmond GPC, Dalton H & Lees V (1989) Molecular analysis of methane monooxygenase fromMethylococcus capsulatus (Bath). Arch. Microbiol. 152: 154–159

    Google Scholar 

  • Stainthorpe AC, Salmond GPC, Dalton H & Murrell JC (1990b) Screening of obligate methanotrophs for soluble methane monooxygenase genes. FEMS Microbiol. Lett. 72: 345–348

    Google Scholar 

  • Stanley SH, Prior SD, Leak DJ & Dalton H (1983) Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methane oxidising organisms: studies in batch and continuous culture. Biotechnol. Lett. 5: 487–492

    Google Scholar 

  • Stephens RL, Haygood MG & Lidstrom ME (1988) Identification of putative methanol dehydrogenase (moxF) structural genes in methylotrophs and cloning ofmoxF genes fromMethylococcus capsulatus (Bath) andMethylomonas albus BG8. J. Bacteriol. 170: 2063–2069

    Google Scholar 

  • Tabor S & Richardson CC (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82: 1074–1078

    Google Scholar 

  • Tikhonenko AS, Bespalova IA, Tyutikov FM, Martynkina LP, Gal'chenko VF & Kriviskii AS (1982) Lysogeny in methanotrophic bacteria. Mikrobiologiya 51: 482–486

    Google Scholar 

  • Topp E & Hanson RS (1991) Metabolism of radiatively important trace gases by methane-oxidizing bacteria. In: Rogers JE & Whitman WB (Eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides and halomethanes (pp 71–90). American Society for Microbiology, Washington DC

    Google Scholar 

  • Toukdarian AE & Lidstrom ME (1984) Molecular construction and characterization ofnif mutants of the obligate methanotrophMethylosinus sp. strain 6. J. Bacteriol. 157: 979–983

    Google Scholar 

  • Tsien HC & Hanson RS (1992) A soluble methane monooxygenase component B gene probe for the identification of methanotrophs that rapidly oxidize trichloroethylene. Appl. Environ. Microbiol. 58: 953–960

    Google Scholar 

  • Tsien H-C, Bratina BJ, Tsuji K & Hanson RS (1990) Use of oligonucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Appl. Environ. Microbiol. 56: 2858–2865

    Google Scholar 

  • Tsien H-C, Brusseau GA, Hanson RS & Wackett LP (1989) Biodegradation of trichloroethylene byMethylosinus trichosporium OB3b. Appl. Env. Microbiol. 55: 3155–3161

    Google Scholar 

  • Tsuji K, Tsien HC, Bratina B, Bastien C, Zhang Y, Machlin S & Hanson RS (1989) Genetic and biochemical studies of methylotrophic bacteria. I GT Press, Chicago, USA

    Google Scholar 

  • Tsuji K, Tsien HC, Hanson RS, De Palma SR, Scholtz R & La Roche S (1990) 16S ribosomal RNA sequences analysis for determination of phylogenetic relationship among methylotrophs. J. Gen. Microbiol. 136: 1–10

    Google Scholar 

  • Tyutikov FM, Belyaevf NN, Smirnova LC, Tikhonenko AS & Krivisky AS (1976) Isolation of bacteriophages of methane-oxidizing bacteria. Mikrobiologiya 6: 1056–1062

    Google Scholar 

  • Tyutikov FM, Bespalova IA, Rebentish BA, Aleksandrushkina NN & Krivisky AS (1980) Bacteriophages of methanotrophic bacteria. J. Bacteriol. 144: 375–381

    Google Scholar 

  • Tyutikov FM, Yesipova VV, Rebentish BA, Bepalova IA, Alexandrushkina NI, Galchenko VV & Tikhonenko AS (1983) Bacteriophages of methanotrophs isolated from fish. Appl. Environ. Microbiol. 46: 917–924

    Google Scholar 

  • Vries GE de, Kües U & Stahl U (1990) Physiology and genetics of methylotrophic bacteria. FEMS Microbiol. Rev. 75: 57–101

    Google Scholar 

  • Waechter-Brulla D, DiSpirito AA, Chistoserdova LV & Lidstrom ME (1993) Methanol oxidation genes in the marine methanotrophMethylomonas sp. Strain A4. J. Bacteriol. 175: 3767–3775

    Google Scholar 

  • Warner PJ, Higgins IJ & Drozd JW (1980) Conjugative transfer of antibiotic resistance to methylotrophic bacteria. FEMS Microbiol. Lett. 7: 181–185

    Google Scholar 

  • Weiss A, Hewlett EL, Myers BA & Falkow S (1983) Transposon Tn5-induced mutation effecting virulence factor ofBordatella pertussis. Infect. Immun. 42: 33–41

    Google Scholar 

  • West CA, Salmond GPC, Dalton H & Murrell JC (1992) Functional expression inEscherichia coli of proteins B and C from soluble methane monooxygenase ofMethylococcus capsulatus (Bath). J. Gen. Microbiol. 183: 1301–1307

    Google Scholar 

  • Whittenbury R, Phillips KC & Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61: 205–218

    Google Scholar 

  • Williams E & Bainbridge BW (1976) Mutation repair mechanisms and transformation in the methane-utilizing bacteriumMethylococcus capsulatus. In: MacDonald KD (Ed) Genetics of Industrial Microorganisms 2nd International Symposium (pp 313–321). Academic Press, London

    Google Scholar 

  • Williams E, Shimmin MA & Bainbridge BW (1977) Mutation in the obligate methylotrophsMethylococcus capsulatus andMethylomonas albus. FEMS Microbiol. Lett. 2: 293–296

    Google Scholar 

  • Williams E & Bainbridge BW (1971) Genetic transformation inMethylococcus capsulatus. J. Appl. Bact. 34: 683–687

    Google Scholar 

  • Williams E & Shimmin MA (1978) Radiation-induced filamentation in obligate methylotrophs. FEMS Microbiol. Lett. 4: 137–141

    Google Scholar 

  • Woodland MP & Dalton H (1984) Purification and characterization of component A of the methane monooxygenase fromMethylococcus capsulatus (Bath). J. Biol. Chem. 259: 53–60

    Google Scholar 

  • Wunsche L, Werner B, Hauche H, Kadelmann WJ, Hilger U, Krivisky AS, Jessipowa WW, Tikhonenko AS & Zimmermann I (1977) Nachweis und erste Characterisierung von Bakteriophagen obligat methanassimilierender Bakterien. Z. Allg. Mikrobiol. 17: 321–323

    Google Scholar 

  • Xu HH, Viebalm M & Hanson RS (1993) Identification of methanolregulated promoter sequences from the facultative methylotrophic bacteriumMethylobacterium organophilum XX. J. Gen. Microbiol. 139: 743–752

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murrell, J.C. Molecular genetics of methane oxidation. Biodegradation 5, 145–159 (1994). https://doi.org/10.1007/BF00696456

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696456

Key words

Navigation