Foundations of Physics Letters

, Volume 1, Issue 4, pp 305–319 | Cite as

Einstein—Podolsky—Rosen experiments: The structure of the probability space. II

  • Matthias P. Kläy


In part I, we have described the Einstein-Podolsky-Rosen experiments in the framework of an axiomatic probability theory. In part II, we present the proofs of the results stated in part I.


Einstein-Podolsky-Rosen Paradox Bell Inequalities Locality Scientific Realism Axiomatic Probability Quantum Mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aerts, D.: “The Physical Origin of the Einstein-Podolsky-Rosen Paradox,” inOpen Questions in Quantum Physics, G. Tarozzi and A. van der Merwe, eds. (Reidel, Dordrecht, 1985), pp. 33–50.Google Scholar
  2. [2]
    Berge, C.:Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).Google Scholar
  3. [3]
    Clauser, J.F., Horne, M.A.: “Experimental Consequences of Objective Local Theories,”Phys. Rev. D 10, 526–535 (1974).Google Scholar
  4. [4]
    Cook, T.A.: “Banach Spaces of Weights on Quasimanuals,”Int. J. Theoret. Phys. 24, 1113–1131 (1985).Google Scholar
  5. [5]
    Davies, E.B., Vincent-Smith, G.F.: “Tensor Products, Infinite Products and Projective Limits of Choquet Simplexes,”Math. Scand. 22, 145–164 (1968).Google Scholar
  6. [6]
    Foulis, D.J., Randall, C.H.: “Empirical Logic and Tensor Products,” inInterpretations and Foundations of Quantum Theory, H. Neumann, ed. (Bibliographisches Institut, Mannheim, 1981), pp. 9–20.Google Scholar
  7. [7]
    Gerelle, E.R., Greechie, R.J., Miller, F.R.: “Weights on Spaces,” inPhysical Reality and Mathematical Description, E.P. Enz and J. Mehra, eds. (Reidel, Dordrecht, 1974), pp. 169–192.Google Scholar
  8. [8]
    Gudder, S.P., Kläy, M.P., Rüttimann, G.T.: “States on Hypergraphs,”Demonstratio Mathematica 19(2), 503–526 (1986).Google Scholar
  9. [9]
    Kläy, M.P.:Stochastic Models on Empirical Systems, Empirical Logics and Quantum Logics, and States on Hypergraphs, Dissertation, Universität Bern 1985.Google Scholar
  10. [10]
    Kläy, M.P.: “Einstein-Podolsky-Rosen Experiments: The Structure of the Probability Space — I,”Found. Phys. Lett., 1988.Google Scholar
  11. [11]
    Kläy, M.P., Randall, C.H., Foulis, D.J.: “Tensor Products and Probability Weights,”Int.J.Theoret.Phys. 26(3), 199–219 (1987).Google Scholar
  12. [12]
    Lazar, A.J.: “Affine Products of Simplices,”Math. Scand. 22, 165–175 (1968).Google Scholar
  13. [13]
    Namioka, I., and Phelps, R.R.: “Tensor Products of Compact Convex Sets,”Pacific J. Math. 31(2), 469–480 (1969).Google Scholar
  14. [14]
    Peressini, A.L.:Ordered Topological Vector Spaces (Harper & Row, New York, 1967).Google Scholar
  15. [15]
    Randall, C.H., Foulis, D.J.: “Operational Statistics and Tensor Products,” inInterpretations and Foundations of Quantum Theory, H. Neumann, ed. (Bibliographisches Institut, Mannheim, 1981), pp. 21–28.Google Scholar
  16. [16]
    Redhead, M.:Incompleteness, Nonlocality, and Realism (Clarendon, Oxford, 1987).Google Scholar
  17. [17]
    Rüttimann, G.T.:Ordered Vector Spaces, Quantum Logics and Convexity, Lecture Notes, University of Denver, 1981.Google Scholar
  18. [18]
    Schaefer, H.H.:Banach Lattices and Positive Operators (Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Band 215) (Springer-Verlag, Berlin, 1974).Google Scholar
  19. [19]
    Wittstock, G.: “Ordered Normed Tensor Products,” inFoundations of Quantum Mechanics and Ordered Linear Spaces, A. Hartkämper and H. Neumann, eds. (Lecture Notes in Physics29) (Springer-Verlag, Berlin, 1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Matthias P. Kläy
    • 1
  1. 1.Institute for Mathematical Studies in the Social SciencesStanford UniversityStanfordUSA

Personalised recommendations