Skip to main content
Log in

A non-linear solution of the oxygen conductance equation. Applications to performance at sea-level and at an altitude of 7350 ft.

  • Published:
Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie Aims and scope Submit manuscript

Summary

The process of oxygen transfer from the atmosphere to the working tissues can be described by a non-linear equation of the type

$$\frac{1}{{\dot U}} = \frac{1}{{\dot V_{\text{A}} }} + \frac{B}{{1 - B}}\left( {\frac{1}{{\lambda \dot Q}}} \right) + \frac{1}{{\lambda \dot Q}} + \frac{K}{{1 - K}}\left( {\frac{1}{{\lambda \dot Q}}} \right)$$

where\(\dot U\) is the overall conductance,\(\dot V_A \) is the effective alveolar ventilation,\(\dot Q\) is the maximum effective cardiac output, λ is the slope of the oxygen dissociation curve, andB andK are coefficients of the typee \(\frac{{ - D_L }}{{\dot Q}}\int\limits_\circ ^{D_L } {\frac{1}{\lambda }} \) ande \(\frac{{ - D_t }}{{\dot Q}}\int\limits_\circ ^{D_t } {\frac{1}{\lambda }} \) where\(\dot D_L \) andD t are the diffusing capacity of the lungs and tissues respectively. A series of isopleths are presented from which\(^{D_L} \int\limits_\circ {\frac{1}{\lambda }} \) may be estimated, given the\({{\dot D_L } \mathord{\left/ {\vphantom {{\dot D_L } {\dot V_{02} }}} \right. \kern-\nulldelimiterspace} {\dot V_{02} }}\) ratio. At sea level, the dominant term is that relating to blood transport; the second and fourth terms of the equation have a negligible influence on the overall conductance. At 7350 ft., the altitude of Mexico City, the second term is of equal importance with the first and third; however, the decrease in overall conductance is less than would be predicted from the decrease in ambient pressure, since the normal shape of the oxygen dissociation curve has the effect of increasing blood conductance. Mexico City is at a rather critical altitude, and hyperventilation and the shape of the oxygen dissociation curve provide less effective compensation for further decreases in ambient pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, T.: Studies in pulmonary diffusion in man: The effects of hyperventilation, exercise, and physical training. Ph. D. Thesis, University of Toronto 1967.

  2. Barcroft, H.: Circulation in skeletal muscle. Handbook of Physiology. Vol. 2. Circulation. Section 2. Ed.W. F. Hamilton. American Physiological Society, Washington, D.C. U.S.A. 1964.

    Google Scholar 

  3. Bock, A. V., H. Field, andG. S. Adair: The oxygen and carbon dioxide curve of human blood. J. biol. Chem.59, 353–378 (1924).

    CAS  Google Scholar 

  4. Bohr, C.: Über die spezifische Tätigkeit der Lungen bei der respiratorischen Gasaufnahme. Skand. Arch. Physiol.22, 221–280 (1909).

    Google Scholar 

  5. Buskirk, E. R., J. Kollias, E. Piconreatigue, R. Akers, E. Prokop, andP. Baker: The effects of altitude on physical performance. Athletic Institute, Washington, D.C. U.S.A. 1966.

    Google Scholar 

  6. Ernsting, J., andR. J. Shephard: Respiratory adaptations in congenital heart disease. J. Physiol. (Lond.)112, 332–343 (1951).

    CAS  Google Scholar 

  7. Frech, W.-E., D. Schultehinrichs, H. R. Vogel u.G. Thews: Modelluntersuchungen zum Austausch der Atemgase. I. Die O2-Aufnahmezeiten des Erythrocyten unter den Bedingungen des Lungencapillarblutes. Pflügers Arch. ges. Physiol.301, 292–301 (1968).

    Article  CAS  Google Scholar 

  8. Shephard, R. J., andJ. Beeckmans: Partitioning cardio-respiratory performance. In: Procedings of 16th Weltkongreß für Sportmedizin, Hannover. Ed.G. Hanekoff. Köln-Berlin: Deutscher Ärzte-Verlag 1966.

    Google Scholar 

  9. - An integrated approach to cardio-respiratory performance at sea level and at an altitude of 7350 ft. Proc. 5th Pan American Congress of Sports Science, Winnipeg. (In press; 1968a).

  10. —: The heart under stress of olympic conditions. J. Amer. med. Ass.205, 151–155 (1968b).

    Google Scholar 

  11. - Oscillations of acid-base equilibrium during maximum exercise. Int. Z. angew. Physiol. (In press; 1968c).

  12. Staub, N. C.: Alveolar-arterial oxygen tension gradient due to diffusion. J. appl. Physiol.18, 673–680 (1963).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shephard, R.J. A non-linear solution of the oxygen conductance equation. Applications to performance at sea-level and at an altitude of 7350 ft.. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 27, 212–225 (1969). https://doi.org/10.1007/BF00696259

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696259

Key-words

Navigation