Skip to main content
Log in

Microbiological aspects of the removal of chlorinated hydrocarbons from air

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Chlorinated hydrocarbons are widely used synthetic chemicals that are frequently present in industrial emissions. Bacterial degradation has been demonstrated for several components of this class of compounds. Structural features that affect the degradability include the number of chlorine atoms and the presence of oxygen substituents. Biological removal from waste streams of compounds that serve as a growth substrate can relatively easily be achieved. Substrates with more chlorine substituents can be converted cometabolically by oxidative routes. The microbiological principles that influence the biodegradability of chlorinated hydrocarbons are described. A number of factors that will determine the performance of microorganisms in systems for waste gas treatment is discussed. Pilot plant evaluations, including economics, of a biological trickling filter for the treatment of dichloromethane containing waste gas indicate that at least for this compound biological treatment is cost effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous (1986) TA-Luft. Bundesministerium für Umweltschutz, Germany.

  • Anonymous (1992) Facts and figures for the chemical industry. Chem. Eng. News 70(26): 36

    Google Scholar 

  • Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211: 132–138

    Google Scholar 

  • Alvarez-Cohen L & McCarty PL (1991a) A cometabolic transformation model for halogenated aliphatic compounds exhibiting product toxicity. Environ. Sci. Technol. 25: 1381–1387

    Google Scholar 

  • Alvarez-Cohen L & McCarty PL (1991b) Two-stage dispersed growth treatment of halogenated aliphatic compounds by cometabolism. Environ. Sci. Technol. 25: 1387–1393

    Google Scholar 

  • Arciero D, Vanelli T, Logan TM & Hooper AB (1989) Degradation of trichloroethylene by the ammonia-oxidizing bacteriumNitrosomas europaea. Biochem. Biophys. Res. Commun. 159: 640–643

    Google Scholar 

  • Asplund G & Grimvall A (1991) Organohalogens in nature. Environ. Sci. Technol. 25: 1346–1350

    Google Scholar 

  • Bartels I, Knackmuss H-J & Reineke W (1984) Suicide inactivation of catechol 2,3-dioxygenase fromPseudomonas putida mt-2 by 3-halocatechols. Appl. Environ. Microbiol. 47: 500–505

    Google Scholar 

  • Bartnicki EW & Castro CE (1969) Biodehalogenation. The pathway of transhalogenation and the stereochemistry of epoxide formation from halohydrins. Biochemistry 8: 4677–4680

    Google Scholar 

  • Blom A, Harder W & Matin A (1992) Unique and overlapping pollutant stress proteins ofEscherichia coli. Appl. Environ. Microbiol. 58: 331–334

    Google Scholar 

  • Brunner W, Staub D & Leisinger T (1980) Bacterial degradation of dichloromethane. Appl. Environ. Microbiol. 40: 950–958

    Google Scholar 

  • Castro CE & Bartnicki EW (1968) Biodehalogenation. Epoxidation of halohydrins, epoxide opening, and transhalogenation by aFlavobacterium sp. Biochemistry 7: 3213–3218

    Google Scholar 

  • Dabrock B, Riedel J, Bertam J & Gottschalk G (1992) Isopropylbenzene (cumene) — a new substrate for the isolation of trichloroethylene-degrading bacteria. Arch. Microbiol. 158: 9–13

    Google Scholar 

  • Dalsgaard T & Revsbech NP (1992) Regulating factors of denitrification in trickling biofilms as measured with the oxygen/nitrous oxide microsensor. FEMS Microbiol. Ecol. 101: 151–164

    Google Scholar 

  • Dalton H, Prior SD, Leak DJ & Stanley SH (1984) Regulation and control of methane monooxygenase. In: Crawford RL & Hanson RS (Eds) Microbial Growth on C Compounds (pp 75–82). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Dean JA (1985) Lange's Handbook of Chemistry, 13th Edition. McGraw-Hill, New York

    Google Scholar 

  • De Bont JAM, Vorage MJAW, Hartmans S & Van den Tweel WJJ (1986) Microbial degradation of 1,3-dichlorobenzene. Appl. Environ. Microbiol. 52: 677–680

    Google Scholar 

  • De Bruin WP, Kotterman MJJ, Posthumus MA, Schraa G & Zehnder AJB (1992) Complete biological reductive transformation of tetrachloroethylene to ethane. Appl. Environ. Microbiol. 58: 1996–2000

    Google Scholar 

  • Diks RMM (1992) The removal of dichloromethane from waste gases in a biological trickling filter. Ph.D. Thesis, Eindhoven University of Technology, The Netherlands

    Google Scholar 

  • Diks RMM & Ottengraf SPP (1991a) Verification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter (Part I). Bioprocess Engineering 6: 93–99

    Google Scholar 

  • Diks RMM & Ottengraf SPP (1991b) Verification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter (Part II). Bioprocess Engineering 6: 131–140

    Google Scholar 

  • DiStefano TD, Gossett JM & Zinder SH (1992) Hydrogen as electron donor for dechlorination of tetrachloroethylene by an anaerobic mixed culture. Appl. Environ. Microbiol. 58: 3622–3629

    Google Scholar 

  • Dolfing J (1988) Acetogenesis. In: Zehnder AJB (Ed) Biology of Anaerobic Microorganisms (pp 417–468). Wiley, New York

    Google Scholar 

  • Dolfing J (1990) Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Arch. Microbiol. 153: 264–266

    Google Scholar 

  • Dolfing J & Tiedje JM (1986) Hydrogen cycling in a three-tiered food web growing on the methanogenic conversion of 3-chlorobenzoate. FEMS Microbiol. Ecol. 38: 293–298

    Google Scholar 

  • Dolfing J & Tiedje JM (1987) Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture. Arch. Microbiol. 149: 102–105

    Google Scholar 

  • Dolfing J & Harrison BK (1992) The Gibbs free energy of formation of halogenated aromatic comounds and their potential role as electron acceptors in anaerobic environments. Environ. Sci. Technol. 26: 2213–2218

    Google Scholar 

  • Edwards EA & Gribic-Galic (1992) Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions. Appl. Environ. Microbiol. 58: 2663–2666

    Google Scholar 

  • Ensign SA, Hyman MR & Arp DA (1992) Cometabolic degradation of chlorinated alkanes by alkene monooxygenase in a propylene-grownXanthobacter strain. Appl. Environ. Microbiol. 58: 3038–3046

    Google Scholar 

  • Ewers J, Clemens W & Knackmuss H-J (1991) Biodegradation of chloroethenes using isoprene as co-substrate. In: Proceedings of the International Symposium on Environmental Biotechnology (pp 77–83), April 22–25, 1991, Oostende, Belgium

  • Ewers J, Freier-Schröder D & Knackmuss H-J (1990) Selection of trichloroethylene (TCE) degrading bacteria that resist inactivation by TCE. Arch. Microbiol. 154: 410–413

    Google Scholar 

  • Fathepure BZ, Tiedje JM & Boyd SA (1988) Reductive dechlorination of hexachlorobenzene to tri- and dichlorobenzenes in anaerobic sewage sludge. Appl. Environ. Microbiol. 54: 327–330

    Google Scholar 

  • Fletcher M (1991) The physiological activity of bacteria attached to solid surfaces. Adv. Microbial Physiol. 32: 53–85

    Google Scholar 

  • Folsom BR, Chapman PJ & Pritchard PH (1990) Phenol and trichloroethylene degradation byPseudomonas cepacia G4: kinetics and interactions between substrates. Appl. Environ. Microbiol. 56: 1279–1285

    Google Scholar 

  • Folsom BR & Chapman PJ (1991) Performance characterization of a model bioreactor for the biodegradation of trichloroethylene byPseudomonas cepacia G4. Appl. Environ. Microbiol. 57: 1602–1608

    Google Scholar 

  • Freedman DL & Gossett JM (1991) Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions. Appl. Environ. Microbiol. 57: 2847–2857

    Google Scholar 

  • Fox BG, Borneman JG, Wackett LP & Lipscomb JD (1990) Haloalkene oxidation by the soluble methane monooxygenase fromMethylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29: 6419–6427

    Google Scholar 

  • Garbarini DR & Lion W (1986) Influence of the nature of soil organics on the sorption of toluene and trichloroethylene. Environ. Sci. Technol. 20: 1263–1269

    Google Scholar 

  • Gossett JM (1987) Measurement of Henry's law constants for C1 and C2 chlorinated hydrocarbons. Environ. Sci. Technol. 21: 202–208

    Google Scholar 

  • Groenewegen PEJ, Driessen AJM, Konings WN & De Bont JAM (1990) Energy-dependent uptake of 4-chlorobenzoate in the coryneform bacterium NTB-1. J. Bacteriol. 172: 419–423

    Google Scholar 

  • Gschwend PM, Macfarlane JK & Newman KA (1985) Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science 227: 1033–1035

    Google Scholar 

  • Haigler BE, Pettigrew CA & Spain JC (1992) Biodegradation of mixtures of substituted benzenes byPseudomonas sp. strain JS150. Appl. Environ. Microbiol. 58: 2237–2244

    Google Scholar 

  • Hardman DJ & Slater JH (1981) Dehalogenases in soil bacteria. J. Gen. Microbiol. 123: 117–128

    Google Scholar 

  • Harker AR & Kim Y (1990) Trichloroethylene degradation by two independent aromatic degrading pathways inAlcaligenes eutrophus JMP134. Appl. Environ. Microbiol. 56: 1179–1181

    Google Scholar 

  • Harrington AA & Kallio RE (1960) Oxidation of methanol and formaldehyde byPseudomonas methanica. Can. J. Microbiol. 6: 1–7

    Google Scholar 

  • Hartmans S & De Bont JAM (1992) Aerobic vinyl chloride metabolism inMycobacterium aurum L1. Appl. Environ. Microbiol. 58: 1220–1226

    Google Scholar 

  • Hartmans S, De Bont JAM & Harder W (1989) Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiol. Rev. 63: 235–264

    Google Scholar 

  • Hartmans S, Leenen EJTM & Voskuilen GTH (1992) Membrane bioreactor with porous hydrophobic membranes for waste-gas treatment. In: Dragt AJ & Van Ham J (Eds) Biotechniques for Air Pollution Abatement and Odour Control Policies (pp 103–106). Elsevier Science Publishers, Amsterdam, The Netherlands

    Google Scholar 

  • Hartmans S, Schmuckle A, Cook AM & Leisinger T (1986) Methyl chloride: naturally occurring toxicant and C-1 growth substrate. J. Gen. Microbiol. 132: 1139–1142

    Google Scholar 

  • Hartmans S & Tramper J (1991) Dichloromethane removal from waste gases with a trickle-bed bioreactor. Bioprocess Engineering 6: 83–92

    Google Scholar 

  • Henry SM & Grbic-Galic D (1991) Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer. Appl. Environ. Microbiol. 57: 236–244

    Google Scholar 

  • Henschler D (1985) Halogenated alkenes and alkynes. In: Anders MW (Ed) Bioactivation of Foreign Compounds (pp 317–347). Academic Press, New York

    Google Scholar 

  • Holliger HC (1992) Reductive dehalogenation by anaerobic bacteria. Ph.D. Thesis, Agricultural University, Wageningen, The Netherlands

    Google Scholar 

  • Holliger C, Schraa G, Stams AJM & Zehnder AJB (1992) Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-trichlorobenzene to 1,3-dichlorobenzene. Appl. Environ. Microbiol. 58: 1636–1644

    Google Scholar 

  • Horvath RS (1972) Microbial cometabolism and the degradation of organic compounds in nature. Bacteriol. Rev. 36: 146–155

    Google Scholar 

  • Hoyle R (1992) Crumbling obstacles to engineered bugs. Bio/technol. 10: 8

    Google Scholar 

  • Hutzinger O & Veerkamp W (1981) Xenobiotic chemicals with pollution potential. In: Leisinger T, Cook A, Hutter R & Nuesch J (Eds) Microbial Degradation of Xenobiotic and Recalcitrant Compounds (pp 3–45). Academic Press, London

    Google Scholar 

  • Janssen DB, Gerritse J, Brackman J, Kalk C, Jager D & Witholt B (1988) Purification and characterization of a bacterial dehalogenase with activity toward halogenated alkanes, alcohols, and ethers. Eur. J. Biochem. 171: 67–72

    Google Scholar 

  • Janssen DB, Jager D & Witholt B (1987) Degradation ofn-haloalkanes and α,ω-dihaloalkanes by wild-type and mutants ofAcinetobacter sp-strain GJ70. Appl. Environ. Microbiol. 53: 561–566

    Google Scholar 

  • Janssen DB, Oldenhuis R & van den Wijngaard AJ (1989) Degradation of xenobiotic compounds by microorganisms. VDI Berichte 735: 25–39

    Google Scholar 

  • Janssen DB, Scheper A, Dijkhuizen L & Witholt B (1985) Degradation of halogenated aliphatic compounds byXanthobacter autotrophicus GJ10. Appl. Environ. Microbiol. 49: 673–677

    Google Scholar 

  • Janssen DB, Scheper A & Witholt B (1984) Biodegradation of 2-chloroethanol and 1,2-dichloroethane by bacterial cultures. Prog. Ind. Microbiol. 20: 169–178

    Google Scholar 

  • Janssen DB & Witholt B (1992) Aerobic and anaerobic degradation of halogenated aliphatics. In: Sigel H & Sigel A (Eds) Metal Ions in Biological Systems, Vol 28, Degradation of Environmental Pollutants by Microorganisms and Their Metalloenzymes (pp 299–327). Marcel Dekker, New York

    Google Scholar 

  • Keuning S, Janssen DB & Witholt B (1985) Purification and characterization of hydrolytic haloalkane dehalogenase fromXanthobacter autotrophicus GJ10. J. Bacteriol. 163: 635–639

    Google Scholar 

  • Kirchner K, Gossen CA & Rehm H-J (1991) Purification of exhaust air containing organic pollutants in a trickle-bed reactor. Appl. Microbiol. Biotechnol. 35: 396–400

    Google Scholar 

  • Kirchner K, Schlachter U & Rehm H-J (1989) Biological purification of exhaust air using fixed bacterial monocultures. Appl. Microbiol. Biotechnol. 31: 629–632

    Google Scholar 

  • Kirchner K, Wagner S & Rehm H-J (1992) Exhaust gas purification using biocatalysts (fixed bacteria monocultures) — the influence of biofilm diffusion rate (O2) on the overall reaction rate. Appl. Microbiol. Biotechnol. 37: 277–279

    Google Scholar 

  • Klecka GM & Gibson DT (1981) Inhibition of catechol 2,3-dioxygenase fromPseudomonas putida by 3-chlorocatechol. Appl. Environ. Microbiol. 41: 1159–1165

    Google Scholar 

  • Kohler-Staub D, Hartmans S, Gälli R, Suter F & Leisinger T (1986) Evidence for identical dichloromethane dehalogenases in different methylotrophic bacteria. J. Gen. Microbiol. 132: 2837–2843

    Google Scholar 

  • Kohler-Staub D & Leisinger T (1985) Dichloromethane dehalogenase ofHyphomicrobium sp. strain DM2. J. Bacteriol. 162: 676–681

    Google Scholar 

  • Kok HJG (1992) Bioscrubbing of air contaminated with high concentrations of hydrocarbons. In: Dragt AJ & van Ham J (Eds) Biotechniques for Air Pollution Abatement and Odour Control Policies (pp 77–82). Elsevier Science Publishers, Amsterdam, The Netherlands

    Google Scholar 

  • Krone UE, Thauer RK & Hogenkamp HPC (1989) Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28: 4908–4914

    Google Scholar 

  • Krone UE, Laufer K, Thauer RK & Hogenkamp HPC (1989) Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria. Biochemistry 28: 10061–10065

    Google Scholar 

  • Krone UE, Thauer RK, Hogenkamp HPC & Steinbach K (1991) Reductive formation of carbon monoxide from CCl4 and FREONs 11, 12, and 13 catalyzed by corrinoids. Biochemistry 30: 2713–2719

    Google Scholar 

  • Kuenen JG, Jørgensen BB & Revsbech NP (1986) Oxygen microprofiles in trichling filter biofilms. Water Res. 20: 1589–1598

    Google Scholar 

  • La Roche SD & Leisinger T (1990) Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S-transferase supergene family. J. Bacteriol. 172: 164–171

    Google Scholar 

  • La Roche SD & Leisinger T (1991) Identification ofdcmR, the regulatory gene governing expression of dichloromethane dehalogenase inMethylobacterium sp. strain DM4. J. Bacteriol. 173: 6714–6721

    Google Scholar 

  • Li S & Wackett LP (1992) Trichloroethylene oxidation by toluene dioxygenase. Biochem. Biophys. Res. Commun. 185: 443–451

    Google Scholar 

  • Little CD, Palumbo AV, Herbes SE, Lidstrom ME, Tyndall RL & Gilmer PJ (1988) Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl. Environ. Microbiol. 54: 951–956

    Google Scholar 

  • Little CD, Keyhan M, Fraley CD, McCann MP & Matin A (1991) Use of stress-induced promoter to enhance trichloroethylene biodegradation in nutrient-limited recombinantE. coli. Abstracts ASM Q-109

  • Loidl M, Hinteregger C, Ditzelmüller G, Ferschl A & Streichsbier F (1990) Degradation of aniline and monochlorinated anilines by soil-bornPseudomonas acidovorans strains. Arch. Microbiol. 155: 56–61

    Google Scholar 

  • Lovelock JE, Maggs RJ & Wade RJ (1973) Halogenated hydrocarbons in and over the Atlantic. Nature (London) 241: 194–196

    Google Scholar 

  • Mackay D & Shiu WY (1981) A critical review of Henry's law constants for chemicals of environmental interest. J. Phys. Chem. Ref. Data 10: 1175–1199

    Google Scholar 

  • McFarland MJ, Vogel CM & Spain JC (1992) Methanotrophic cometabolism of trichloroethylene (TCE) in a two stage bioreactor system. Water Research 26: 259–265

    Google Scholar 

  • Mohn WW & Tiedje JM (1990) Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation. Arch. Microbiol. 153: 267–271

    Google Scholar 

  • Motosugi K & Soda K (1983) Microbial degradation of synthetic organochlorine compounds. Experientia 39: 1214–1220

    Google Scholar 

  • Nagasawa T, Nakamura T, Yu F, Watanabe I & Yamada H (1992) Purification and characterization of halohydrin hydrogen-halide lyase from a recombinantEscherichia coli containing the gene from aCorynebacterium sp. Appl. Microbiol. Biotechnol. 36: 478–482

    Google Scholar 

  • Nakajima T, Uchiyama H, Yagi O & Nakahara T (1992) Novel metabolite of trichloroethylene in a methanotrophic bacterium,Methylocystis sp. M, and hypothetical degradation pathway. Biosci. Biotech. Biochem. 56: 486–489

    Google Scholar 

  • Nakamura T, Nagasawa T, Yu F, Watanabe I & Yamada H (1992) Resolution and some properties of enzymes involved in enantioselective transformation of 1,3-dichloro-2-propanol to (R)-3-chloro-1,2-propanediol byCorynebacterium sp. strain N-1074. J. Bacteriol. 174: 7613–7619

    Google Scholar 

  • Nelson MJK, Montgomery SO, Mahaffey WR & Pritchard PH (1987) Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl. Environ. Microbiol. 53: 949–954

    Google Scholar 

  • Nelson MJK, Montgomery SO, O'Neill EJ & Pritchard PH (1986) Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl. Environ. Microbiol. 52: 383–384

    Google Scholar 

  • Nelson MJK, Montgomery SO & Pritchard PH (1988) Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl. Environ. Microbiol. 54: 604–606

    Google Scholar 

  • Newman LM & Wackett LP (1991) Fate of 2,2,2,-trichloroacetaldehyde (chloral hydrate) produced during trichloroethylene oxidation by methanotrophs. Appl. Environ. Microbiol. 57: 2399–2402

    Google Scholar 

  • Oldenhuis R (1992) Microbial degradation of chlorinated compounds. Ph.D. Thesis, University of Groningen, The Netherlands

    Google Scholar 

  • Oldenhuis RJ, Oedzes JY, Van der Waarde JJ & Janssen DB (1991) Kinetics of chlorinated hydrocarbon degradation byMethylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl. Environ. Microbiol. 57: 7–14

    Google Scholar 

  • Oldenhuis R, Vink RLJM Janssen DB & Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons byMethylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl. Environ. Microbiol. 55: 2819–2826

    Google Scholar 

  • Ottengraf SPP (1987) Biological systems for waste gas elimination. Trends Biotechnol. 5: 132–136

    Google Scholar 

  • Ottengraf SPP & Diks RMM (1992) Process technology of biotechniques. In: Dragt AJ & van Ham J (Eds) Biotechniques for Air Pollution Abatement and Odour Control Policies (pp 17–31). Elsevier Science Publishers, Amsterdam, The Netherlands

    Google Scholar 

  • Ottengraft SPP, Meesters JJP, Van den Oever AHC & Rozema HR (1986) Biological elimination of volatile xenobiotic compounds in biofilters. Bioprocess Engineering 1: 61–69

    Google Scholar 

  • Parsons JR, Opperhuizen A & Hutzinger O (1987) Influence of membrane permeation on biodegradation kinetics of hydrophobic compounds. Chemosphere 16: 1361–1370

    Google Scholar 

  • Pearson CR & McConell G (1975) Chlorinated C1 and C2 hydrocarbons in the marine environment. Proc. R. Soc. London B 189: 305–332

    Google Scholar 

  • Phelps PA, Agarwal S, Speitel GE Jr. & Georgiou G (1992)Methylosinus trichosporium OB3b mutants having constitutive expression of soluble methane monooxygenase in the presence of high levels of copper. Appl. Environ. Microbiol. 58: 3701–3708

    Google Scholar 

  • Phelps TJ, Niedzielski JJ, Schram RM, Herbes SE & White DC (1990) Biodegradation of trichloroethylene in continuous-recycle expanded-bed bioreactors. Appl. Environ. Microbiol. 56: 1702–1709

    Google Scholar 

  • Reineke W & Knackmuss H-J (1984) Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl. Environ. Microbiol. 47: 395–402

    Google Scholar 

  • Revsbech NP & Jørgensen BB (1986) Microelectrodes: Their use in microbial ecology. Adv. Microb. Ecol. 9: 293–352

    Google Scholar 

  • Sander P, Wittich R-M, Fortnagel P, Wilkes H & Francke W (1991) Degradation of 1,2,4-trichloro- and 1,2,4,5-tetrachlorobenzene byPseudomonas strains. Appl. Environ. Microbiol. 57: 1430–1440

    Google Scholar 

  • Schanke CA & Wackett LP (1992) Environmental reductive elimination reactions of polychlorinated ethanes mimicked by transition-metal coenzymes. Environ. Sci. Technol. 26: 830–833

    Google Scholar 

  • Schippert E (1989) Das Biosolv-Verfahren von Keramchemie zur Absorption von schwer wasserlöslichen Lösemitteln. In: Biologische Abgasreinigung (pp 161–177) VDI-Verlag, Dusseldorf

    Google Scholar 

  • Schlegel HG (1986) General Microbiology (p 253). Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Scholtz R, Leisinger T, Suter F & Cook AM (1987) Characterization of 1-chlorohexane halidohydrolase, a dehalogenase of wide substrate range from anArthrobacter sp. J. Bacteriol. 169: 5016–5021

    Google Scholar 

  • Scholtz R, Wackett LP, Egli C, Cook AM & Leisinger T (1988) Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium. J. Bacteriol. 170: 5698–5704

    Google Scholar 

  • Schraa G, Boone ML, Jetten MSM, van Neerven ARW, Colberg PJ & Zehnder AJB (1986) Degradation of 1,4-dichlorobenzene byAlcaligenes sp. strain A175. Appl. Environ. Microbiol. 52: 1374–1381

    Google Scholar 

  • Shields MS, Montgomery S, Cuskey SM, Chapman PJ & Pritchard PH (1991) Mutants ofPseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene. Appl. Environ. Microbiol. 57: 1935–1941

    Google Scholar 

  • Shields MS & Reagin MJ (1992) Selection of aPseudomonas cepacia strain constitutive for the degradation of trichloroethylene. Appl. Environ. Microbiol. 58: 3977–3983

    Google Scholar 

  • Stafbureau NER (1992) Nederlandse Emissie Richtlijnen, RIVM, Bilthoven, The Netherlands

    Google Scholar 

  • Strand SE, Wodrich JV & Stensel HD (1991) Biodegradation of chlorinated solvents in a sparged, methanotrophic biofilm reactor. J. Wat. Poll. Control Fed. 63: 859–867

    Google Scholar 

  • Stromeyer SA, Winkelbauer W, Kohler H, Cook AM & Leisinger T (1991) Dichloromethane utilized by an anaerobic mixed culture: acetogenesis and methanogenesis. Biodegradation 2: 129–137

    Google Scholar 

  • Stucki G (1989) Biologische Entzorgung von Methylenchlorid aus Abluft und Abwaser. Swiss Chem. 11: 35–38

    Google Scholar 

  • Stucki GR, Gälli R, Ebershold H-R & Leisinger T (1981) Dehalogenation of dichloromethane by cell extracts ofHyphomicrobium DM2. Arch. Microbiol. 130: 366–371

    Google Scholar 

  • Stucki G & Leisinger T (1983) Bacterial degradation of 2-chloroethanol proceeds via 2-chloroacetic acid. FEMS Microbiol. Lett. 16: 123–126

    Google Scholar 

  • Stumm W & Morgan JJ (1981) Aquatic Chemistry, 2nd edition (pp 749–756). Wiley, New York

    Google Scholar 

  • Tardif G, Greer CW, Labbé D & Lau PCK (1991) Involvement of a large plasmid in the degradation of dichloromethane byXanthobacter autotrophicus. Appl. Environ. Microbiol. 57: 1853–1857

    Google Scholar 

  • Thauer RK, Jungermann K & Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180

    Google Scholar 

  • Traunecker J, Preuß A & Diekert G (1991) Isolation and characterization of a methyl chloride utilizing, strictly anaerobic bacterium. Arch. Microbiol. 156: 416–421 Tros ME, Schraa G & Zehnder AJB (1992) Biodegradation of xenobiotic compounds at low concentrations: role of threshold concentrations. In: Abstracts of the Sixth International Symposium on Microbial Ecology (p 131), 6–11 September 1992, Barcelona Tsien H-C, Brusseau GA, Hanson RS & Wackett LP (1989) Biodegradation of trichloroethylene byMethylosinus trichosporium OB3b. Appl. Environ. Microbiol. 55: 3155–3161

    Google Scholar 

  • Uchiyama H, Oguri K, Yagi O & Kokufuta E (1992) Trichloroethylene degradation by immobilized resting cells ofMethylocystis sp. M in a gas-solid bioreactor. Biotechnol. Lett. 14: 619–622

    Google Scholar 

  • Vandenbergh PA, Olsen RH & Colaruotolo JF (1981) Isolation and genetic characterization of bacteria that degrade chloroaromatic compounds. Appl. Environ. Microbiol. 42: 737–739

    Google Scholar 

  • Van den Wijngaard AJ, Janssen DB & Witholt B (1989) Degradation of epichlorohydrin and halohydrins by bacterial cultures isolated from freshwater sediment. J. Gen. Microbiol. 135: 2199–2208

    Google Scholar 

  • Van den Wijngaard AJ, Reuvekamp PTW & Janssen DB (1991) Purification and characterization of haloalcohol dehalogenase fromArthrobacter sp. strain AD2. J. Bacteriol. 173: 124–129

    Google Scholar 

  • Van den Wijngaard AJ, Van der Kamp KWHJ, Van der Ploeg J, Pries F & Janssen DB (1992) Degradation of 1,2-dichloroethane byAncylobacter aquaticus and other facultative methylotrophs. Appl. Environ. Microbiol. 58: 976–983

    Google Scholar 

  • Van der Meer JR, De Vos WM, Harayama S & Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56: 677–694

    Google Scholar 

  • Van Loosdrecht MCM, Lyklema J, Norde W & Zehnder AJB (1990) Influence of interfaces on microbial activity. Microbiol. Rev. 54: 75–87

    Google Scholar 

  • Vogel TM, Criddle CS & McCarty PL (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21: 722–736

    Google Scholar 

  • Wackett LP, Brusseau GA, Householder SR & Hanson RS (1989) Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl. Environ. Microbiol. 55: 2960–2964

    Google Scholar 

  • Wackett LP & Gibson DT (1988) Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies withPseudomonas putida F1. Appl. Environ. Microbiol. 54: 1703–1708

    Google Scholar 

  • Wackett LP & Householder SR (1989) Toxicity of trichloroethylene toPseudomonas putida F1 is mediated by toluene dioxygenase. Appl. Environ. Microbiol. 55: 2723–2725

    Google Scholar 

  • Weightman AJ & Slater JH (1980) Selection ofPseudomonas putida strains with elevated dehalogenase activities by continuous culture growth on chlorinated alkanoic acids. J. Gen. Microbiol. 121: 187–193

    Google Scholar 

  • Winter RB, Yen K-M & Ensley BD (1989) Efficient degradation of trichloroethylene by a recombinantEscherichia coli. Biotechnol. 7: 282–285

    Google Scholar 

  • Witholt B, Janssen DB & Keuning S (1989) Biodegradation of xenobiotics by specific bacteria: research and applications. In: Biotreatment. The Use of Microorganisms in the Treatment of Hazardous Materials and Hazardous Wastes (pp 109–117). Proceedings of the 2nd National Conference, November 27–29, 1989, Washington, DC, The Hazardous Materials Control Research Institute

    Google Scholar 

  • Wolff F (1992) Biologische Abluftreinigung mit einem intermittierend befeuchteten Tropfkorper. In: Dragt AJ & van Ham J (Eds) Biotechniques for air pollution abatement and odour control policies (pp 49–62). Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Yokota T, Omori T & Kodama T (1987) Purification and properties of haloalkane dehalogenase fromCorynebacterium sp. strain m15-3. J. Bacteriol. 169: 4049–4054

    Google Scholar 

  • Zeyer JA, Wasserfallen A & Timmis KN (1985) Microbial mineralization of ring-substituted anilines through anortho-cleavage pathway. Appl. Environ. Microbiol. 50: 447–453

    Google Scholar 

  • Zylstra GJ, Wackett LP & Gibson DT (1989) Trichloroethylene degradation byEscherichia coli containing the clonedPseudomonas putida F1 toluene dioxygenase genes. Appl. Environ. Microbiol. 55: 3162–3166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolfing, J., van den Wijngaard, A.J. & Janssen, D.B. Microbiological aspects of the removal of chlorinated hydrocarbons from air. Biodegradation 4, 261–282 (1993). https://doi.org/10.1007/BF00695974

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00695974

Key words

Navigation