Skip to main content
Log in

Experimental linkage issues of petroleum site bioremediation

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Bioremediation of petroleum-contaminated sites is expected to be a cost-effective remediation technology. However, many potential users of the technology expect the reliability of this technology to be similar to other candidate technologies for widespread consideration. In particular, candidate technologies should possess the property of reliable experimental linkage — there should be reasonable confidence that experiments done at one scale can be reliably related to another. An important example is bench-scale treatability studies that should result in linkages with commercial-scale operations. In this respect comparison of bioremediation to other candidate technologies reveals that bioremediation is in an early stage of its evolution. It is being pursued at a variety of sites and scales with practitioners from a variety of disciplines. Integration of activities between disciplines and an ability to quantitatively compare results at different sites and scales is proceeding. This paper addresses a number of physical, chemical, biological, analytical, and statistical issues regarding the successful comparison of results between experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aeckersberg F, Bak F & Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch. Microbiol. 156: 5–14

    Google Scholar 

  • Aggarwal PK & Hinchee RE (1991) Monitoring in situ biodegradation of hydrocarbons by using stable carbon isotopes. Environ. Sci. Technol. 25: 1178–1180

    Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol. Rev. 45: 180–209

    Google Scholar 

  • Atlas RM & Bartha R (1987) Microbial Ecology: Fundamentals and Applications. Benjamin/Cummings, Menlo Park, California

    Google Scholar 

  • Austin BJ, Calomiris JJ, Walker JD & Colwell RR (1977a) Numerical taxonomy and ecology of petroleum-degrading bacteria. Appl. Environ. Microbiol. 34: 60–68

    Google Scholar 

  • Austin BJ, Colwell RR, Walker JD & Calomiris JJ (1977b) The application of numerical taxonomy to the study of petroleumdegrading bacteria isolated from the aquatic environment. Dev. Ind. Microbiol. 18, 685–695

    Google Scholar 

  • Austin B, Garges S, Conrad B, Harding EE, Colwell RR, Simidu U & Taga N (1979) Comparative study of the aerobic heterotrophic bacterial flora of Chesapeake Bay and Tokyo Bay. Appl. Environ. Microbiol. 37: 704–714

    Google Scholar 

  • Bailey JE & Ollis DF (1987) Biochemical Engineering Fundamentals (p. xix). McGrawHill, New York

    Google Scholar 

  • Bartha R & Atlas RM (1977) The microbiology of aquatic oil spills. Adv. Appl. Microbiol. 22: 225–266

    Google Scholar 

  • Bates DM & Watts DG (1988) Nonlinear Regression Analysis and its Applications, Wiley, New York

    Google Scholar 

  • Bazylinski DA, Wirsen CO & Jannasch HW (1989) Microbial utilization of naturally occurring hydrocarbons at the Guaymas Basin hydrothermal vent site. Appl. Environ. Microbiol. 55: 2832–2836

    Google Scholar 

  • Bertrand JC, Caumette P, Mille G, Gilewicz M & Denis M (1989) Anaerobic biodegradation of hydrocarbons. Sci. Progr. (Oxford) 73: 333–350

    Google Scholar 

  • Bertrand JC, Almallah M, Acquaviva M & Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett. Appl. Microbiol. 11: 260–263

    Google Scholar 

  • Blasig R, Huth J, Franke P, Borneleit P, Schunck W-H & Müller H-G (1989) Degradation of long-chain n-alkanes by the yeastCandida maltosa. Appl. Microbiol. Biotechnol. 31: 571–576

    Google Scholar 

  • Blackburn JW (1987) Prediction of organic chemical fates in biological treatment systems. Environ. Progress 6: 217–223

    Google Scholar 

  • Blackburn JW (1988a) Problems in and potential for biological treatment of hazardous wastes. Proc. 81 st Annual APCA (now Air and Waste Management Association) Meeting. Pittsburgh

  • Blackburn JW (1988b) Is there an ‘uncertainty principle’ in microbial waste treatment? In: Huntley ME (Ed) Biotreatment of Agricultural Wastewater (pp 149–161). CRC Press, Inc. Boca Raton, Florida

    Google Scholar 

  • Blackburn JW (1989) Improved understanding and application of hazardous waste biological treatment processes using microbial systems analysis techniques. Haz. Waste & Haz. Materials 6: 173–193

    Google Scholar 

  • Brown EJ & Braddock JF (1990) Sheen screen, a miniaturized most-probable number method for enumeration of oil-degrading microorganisms. Appl. Environ. Microbiol. 56: 3895–3896

    Google Scholar 

  • Brown EJ, Resnick SM, Rebstock C, Luong HV & Lindstrom JE (1991) UAF radiorespirometric protocol for assessing hydrocarbon mineralization potential in environmental samples. Biodegradation 2: 121–127.

    Google Scholar 

  • Buckley EN, Jonas RB & Pfaender FR (1976) Characterization of microbial isolates from an estuarine ecosystem: relationship of hydrocarbon utilization to ambient hydrocarbon concentrations. Appl. Environ. Microbiol. 32: 232–237

    Google Scholar 

  • Butler GC (Ed) (1978) Principles of Ecotoxicology Wiley, New York

    Google Scholar 

  • Butler EL, Douglas GS, Steinhauer WS, Prince RC, Aczel T, Hsu CS, Bronson MT, Clark JR & Lindstrom JE (1991) Hopane, a new chemical tool for measuring oil biodegradation. In: Hinchee RE & Olfenbuttel RF (Eds) On-site Reclamation. Processes for Xenobiotic and Hydrocarbon Treatment (pp 515–521). Butterworth-Heinemann, Boston

    Google Scholar 

  • Cooney CL (1983) Bioreactors: design and operation. Science 219: 728–733

    Google Scholar 

  • Chianelli RR, Aczel T, Bare RE, George GN, Genowitz MW, Grossman MJ, Haith CE, Kaiser FJ, Lessard RR, Liotta R, Mastracchio RL, Minak-Bernero V, Prince RC, Robbins WK, Stiefel EI, Hinton SM, Bragg JR, McMillen SJ & Atlas RM (1991) Bioremediation technology development and application to the Alaskan spill. Proceedings of the 1991 International Oil Spill Conference (pp 549–558). American Petroleum Institute, Washington DC

    Google Scholar 

  • Chosson P, Lanau C, Connan J & Dessort D (1991) Biodegradation of refractory hydrocarbon biomarkers from petroleum under laboratory conditions. Nature 351: 640–642

    Google Scholar 

  • DiGrazia PM, King JMH, Blackburn JW, Applegate BA, Bienkowski PR, Hilton BL & Sayler GS (1991) Dynamic response of naphthalene biodegradation in a continuous flow soil slurry reactor. Biodegradation 2: 81–91

    Google Scholar 

  • Douglas GS, McCarthy KJ, Dahlen DT, Seavey JA, Steinhauer WG, Prince RC & Elmendorf DL (1992) The use of hydrocarbon analyses for environmental assessment and remediation. In: Kostecki PT & Calabrese EJ (Eds) Contaminated Soils; Diesel Fuel Contamination (pp 1–21). Lewis Publishers, Chelsea, MI

    Google Scholar 

  • Eastcott L, Shiu WY & Mackay D (1988) Environmentally relevant physical-chemical properties of hydrocarbons: a review of data and development of simple correlations. Oil & Chem. Pollut. 4: 191–216

    Google Scholar 

  • Efron B & Tibshirani R (1991) Statistical data analysis in the computer age. Science 253: 390–395

    Google Scholar 

  • Elder RS, Thompson WO & Myers RH (1980) Properties of composite sampling procedures. Technometrics 22: 179–186

    Google Scholar 

  • Foght JM, Fedorak PM & Westlake DWS (1990) Mineralization of (14C)hexadecane and (14C)phenanthrene in crude oil; specificity among bacterial isolates. Can. J. Microbiol. 36: 169–175

    Google Scholar 

  • Giddings JM & Eddlemon GK (1979) Some ecological and experimental properties of complex aquatic microcosms. Intern. J. Environmental Studies 13: 1–5

    Google Scholar 

  • Gorsuch JW, Lower WR, Lewis MA & Wang W (1991) Plants for Toxicity Assessment: Second Volume. ASTMSTP 1115. Amer. Soc. Test. Mater., Philadelphia

    Google Scholar 

  • Gough MA & Rowland SJ (1990) Characterization of unresolved complex mixtures of hydrocarbons in petroleum. Nature 344: 648–650

    Google Scholar 

  • Gough MA, Rhead MM & Rowland SJ (1991) Biodegradation studies of unresolved complex mixtures of hydrocarbons; model UCM hydrocarbons and the aliphatic UCM. Org. Geochem. 18: 17–22

    Google Scholar 

  • Grady CPL, Jr. (1985) Biodegradation: its measurement and microbiological basis. Biotechnol. Bioengineer., 27(5): 660–674

    Google Scholar 

  • Gundlach ER, Boehm PD, Marchand M, Atlas RM, Ward DM & Wolfe DA (1983) The fate of Amoco Cadiz oil. Science 221: 122–129

    Google Scholar 

  • Hartman S, de Bont JAM & Harder W (1989) Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiol. Rev. 63, 235–264.

    Google Scholar 

  • Hassett JJ & Banwart WL (1989) The sorption of nonpolar organics by soils and sediments. In: Sawhney BL & Brown K (Eds) Reactions and Movement of Organic Chemicals in Soils (pp. 31–44). American Society of Agronomy, Madison, WE

    Google Scholar 

  • Hommel RK (1990) Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. Biodegradation 1: 107–119

    Google Scholar 

  • Johnstone RE & Thring MW (1957) Pilot Plants, Models, and Scale-up Methods in Chemical Engineering, McGraw-Hill, New York

    Google Scholar 

  • Kennicutt MC (1988) The effect of biodegradation on crude oil bulk and molecular composition. Oil & Chem. Pollut. 4: 89–112

    Google Scholar 

  • Knezovich JP, Harrison FL & Wilhelm RG (1987) The bioavailability of sedimentsorbed organic chemicals: A review. Water Air Soil Pollut. 32: 233–245

    Google Scholar 

  • Linz DG, Neuhauser EF & Middleton AC (1991) Perspectives on bioremediation in the gas industry. In: Sayler GS, Fox R & Blackburn JW (Eds) Environmental Biotechnology for Waste Treatment (pp 25–36). Plenum Press, New York

    Google Scholar 

  • Lindstrom JE, Prince RC, Clark JR, Grossman MJ, Yeager TR, Braddock JF & Brown EJ (1991) Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill. Appl. Environ. Microbiol. 57: 2514–2522

    Google Scholar 

  • Litchfield CD (1991) Practices, potential, and pitfalls in the application of biotechnology to environmental problems. In: Sayler GS, Fox R & Blackburn JW (Eds) Environmental Biotechnology for Waste Treatment (pp 147–157). Plenum Press, New York

    Google Scholar 

  • Leahy JG & Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54: 303–315

    Google Scholar 

  • McFarland MJ, Sims RC & Blackburn JW (1991) Use of treatability studies in developing remediation strategies for contaminated soils. In: Sayler GS, Fox R & Blackburn JW (Eds) Environmental Biotechnology for Waste Treatment (pp 163–174). Plenum Press, New York

    Google Scholar 

  • Munkittrick KR, Power EA & Sergey GA (1991) The relative sensitivity of Microtox, daphnid, rainbow trout, and fathead minnow acute lethality tests. Environ. Toxicol. Water Quality 6: 35–62

    Google Scholar 

  • Needham J (1935) Order and Life. The MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • NETAC (1992) Interim Protocol for Bioremediation Product Testing. National Environmental Technology Applications Corporation, University of Pittsburgh Applied Research Center, Pittsburgh

    Google Scholar 

  • NRC (1981) Testing For Effects of Chemicals on Ecosystems. National Research Council. National Academy Press, Washington, DC.

    Google Scholar 

  • Oberbremer A & Müller-Hurtig R (1989) Aerobic stepwise hydrocarbon degradation and formation of biosurfactants by an original soil population in a stirred reactor. Appl. Microbiol. Technol. 31: 582–586

    Google Scholar 

  • Oudot J (1984) Rates of microbial degradation of petroleum components as determined by computerized capillary gas chromatography and computerized mass spectrometry. Mar. Env. Res. 13: 277–302

    Google Scholar 

  • Phadke MS (1989) Quality Engineering Using Robust Design. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Prince RC (1992) Bioremediation of oil spills, with particular reference to the spill from the Exxon Valdez. In: Fry JC, Gadd GM, Herbert RA, Jones CW & Watson-Craik IA (Eds) Microbial Control of Pollution (pp. 19–34). Society for General Microbiology Symposium 48, Cambridge University Press

  • Pritchard PH & AW Bourquin (1985) Microbial toxicity studies, In: Rand GM & SR Petrocelli (Eds) Fundamentals of Aquatic Toxicology (pp 177–217). Hemisphere Publishing, New York

    Google Scholar 

  • Prokop A (1983) Reactor design fundamentals, hydrodynamics, mass trasfer, heat exchange, control and scale-up. Biochemical Engineering (pp 355–376). American Chemical Society, Washington DC

    Google Scholar 

  • Rao PSC, Bellin CA & Brusseau ML (1992) Coupling of sorption, biodegradation, and transport of organic contaminants in soils and aquifers: paradigms and paradoxes. In: Linn D et al. (Ed) Sorption and Degradation of Agrichemicals in Soils. Special Publication Soil Sci. Soc. Amer., Madison, WI

    Google Scholar 

  • Rand GM & Petrocelli SR (Eds) (1985) Fundamentals of Aquatic Toxicology (pp 1–30). Hemisphere Publishing, New York

    Google Scholar 

  • Ramadan MA, El-Tayeb OM & Alexander M (1990) Inoculum size as a factor limiting success of inoculation for biodegradation. Appl. Environ. Micro. 56: 1392–1396

    Google Scholar 

  • Rogerson A & Berger J (1983) Enhancement of the microbial degradation of crude oil by the ciliateColpidium colpoda. J. Gen. Appl. Microbiol. 29: 41–50

    Google Scholar 

  • Sall J & Lehman A (1992) JMP Design User's Guide: Version 2, SAS Institute, Inc., Cary, NC

    Google Scholar 

  • SAS Institute (1989) JMP Users Guide, Cary, NC

  • Smith MR (1990) The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1: 191–206

    Google Scholar 

  • Snellnam EA, Collins RP & Cooke JC (1988) Utilization of fuel oils by fungi isolated from oceanic tarballs. Lett. Appl. Microbiol. 6: 105–107

    Google Scholar 

  • Sohngen NL (1913) Benzin, Petroleum Paraffinöl, und Paraffin als Kohlenstoff und Energiequelle fur Mikroben. Zentr. Bakt. Parasitenk., Abt. II, 37: 595–605

    Google Scholar 

  • US Environmental Protection Agency (1989) Guide for Conducting Treatability Studies under CERCLA. Interim Final Report EPA/540/2-89/058. Office of Research and Development and Office of Emergency and Remedial Response, Washington, DC

    Google Scholar 

  • Venkateswaran K, Iwabuchi T, Matsui Y, Toki H, Hamada E & Tanaka H (1991) Distribution and biodegradation potential of oil-degrading bacteria in northeastern Japanese coastal waters. FEMS Microbiol. Ecol. 86: 113–122

    Google Scholar 

  • Vestal R, Cooney JJ, Crow S & Berger J (1984) The effects of hydrocarbons on aquatic microorganisms. In: Atlas RM (Ed) Petroleum Microbiology (pp. 475–505). Macmillan, New York

    Google Scholar 

  • Wang W, Gorsuch JW & WR Lower (1990) Plants for Toxicity Assessment. ASTM STP 1091. Amer. Soc. Test. Mater., Philadelphia.

    Google Scholar 

  • Walter U, Beyer M, Klein J & Rehm H-J (1991) Degradation of pyrene byRhodococcus sp. UW1. Appl. Microbiol. Biotechnol. 34: 671–676

    Google Scholar 

  • Warren-Hicks W, Parkhurst BR & Baker SS Jr (Eds) (1989) Ecological Assessments of Hazardous Waste Sites: A field and laboratory reference document. EPA 600/3-89/013, Washington, DC

  • Watkinson RJ & Morgan P (1990) Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation 1: 79–92

    Google Scholar 

  • Weber WJ Jr, Voice TC, Pirbazari M, Hunt GE & Ulanoff NM (1983) Sorption of hydrophobic compounds by sediments, soils and suspended solids. II. Sorbent evaluation studies. Water Res. 17: 1443–1452

    Google Scholar 

  • Weibe WJ (1971), Perspectives in Microbial Ecology, In: Odum G. (Ed.) Fundamentals of Ecology, W.B. Sanders, Chapter 19.

  • Woodyard PT (1991) Considerations in the selection of environmental biotechnology as viable in field-scale waste treatment applications. In: Sayler GS, Fox R & Blackburn JW (Eds) Environmental Biotechnology for Waste Treatment (pp 37–45). Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blackburn, J.W., Harner, E.J., Robbins, W.K. et al. Experimental linkage issues of petroleum site bioremediation. Biodegradation 4, 207–230 (1993). https://doi.org/10.1007/BF00695970

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00695970

Key words

Navigation