Metal Science and Heat Treatment

, Volume 12, Issue 2, pp 106–111 | Cite as

Structure and properties of beryllium bronze microalloyed with magnesium

  • Kh. G. Tkhagapsoev
  • A. G. Rakhshtadt
  • Zh. P. Pastukhova
  • A. G. Karpov
Precision Alloys


  1. 1.

    The addition of a surface-active element (magnesium) increases the dispersity and uniformity of the structure, reducing the average grain size of the α-solid solution and the inclusions of excess plases in quenched beryllium bronzes.

  2. 2.

    Microalloying of beryllium bronzes B2 and BNT1.9 with magnesium substantially improves their strength characteristics (elastic limit, relaxation resistance, cyclic strength) as the result of suppression of the discontinuous decomposition mechanism and the uniform strengthening of both the bulk and grain boundary areas. The best strength characteristics of beryllium bronzes were attained with 0.1$ Mg.

  3. 3.

    The newly developed compositions, alloyed with Mg, are designated BNT1.9Mg and B2Mg. The optimal heat treatment for these alloys is quenching from 770°C and aging at 320°C for 6h.

  4. 4.

    Commercial trials of the new beryllium bronzes showed that elastic elements of these bronzes have better combinations of basic properties than those of the standard compositions.



Magnesium Heat Treatment Beryllium Good Combination Strength Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. G. Rakhshtadt, Spring Alloys [in Russian], Metallurgiya, Moscow (1965).Google Scholar
  2. 2.
    Hiroshi Itsu, Takashi Agatsuma, and Kimo Hashidzumi, Mitsubishi Denki Gaio,41, No. 6 (1967).Google Scholar
  3. 3.
    A. I. Chipizhenko, Byull. TsIIN MTsM SSSR,7 (84) (1957).Google Scholar
  4. 4.
    A. I. Chipizhenko, in: Promising Developments in Elastic Sensing Elements [in Russian], TsIIN Élektrotekhnicheskoi Promyshlennosti i Priborostroeniya (1961).Google Scholar
  5. 5.
    A. G. Rakhshtadt and A. M. Grishin, Stal' No. 9 (1969).Google Scholar
  6. 6.
    G. S. Ionychev, Zh. P. Pastukhova, A. G. Rakhshtadt, and N. F. Komissarova, Izv. Vuzov., Mashinostroenie, No. 1 (1968).Google Scholar
  7. 7.
    S. N. Zadumkin, Zh. Neorgan. Khim., No. 8 (1960).Google Scholar
  8. 8.
    A. G. Rakhshtadt and M. A. Shtremel', Zavod. Lab., No. 6 (1960).Google Scholar
  9. 9.
    V. I. Arkharov, Trudy Inst. Fiz. Metal., UFAN, No. 19 (1958).Google Scholar
  10. 10.
    W. Bonfeld, Trans. Met. Soc. AIME,239, No. 1 (1967).Google Scholar
  11. 11.
    P. Wilkes, Acta Met.,16, (1968).Google Scholar
  12. 12.
    G. Newkirk, Aging of Alloys [Russian translation], Metallurgizdat, Moscow (1962).Google Scholar
  13. 13.
    D. Turnbull, Acta Met.,3 (1955).Google Scholar

Copyright information

© Consultants Bureau 1970

Authors and Affiliations

  • Kh. G. Tkhagapsoev
  • A. G. Rakhshtadt
  • Zh. P. Pastukhova
  • A. G. Karpov

There are no affiliations available

Personalised recommendations