Journal of Comparative Physiology B

, Volume 158, Issue 3, pp 291–300 | Cite as

Iron binding proteins and their roles in the tobacco hornworm,Manduca sexta (L.)

  • H. A. Huebers
  • E. Huebers
  • C. A. Finch
  • B. A. Webb
  • J. W. Truman
  • L. M. Riddiford
  • A. W. Martin
  • W. H. Massover


Manduca sexta larvae accumulate large amounts of iron during their larval feeding period. When59Fe was fed to 5th instar larvae, it was evenly distributed among the hemolymph, gut and carcass until the cessation of feeding. By pupation 95% of the labelled iron was found in the fat body. In the adult a significant portion of this iron was found in flight muscle.

Studies of the hemolymph disclosed two ironcontaining proteins. The first was composed of a single polypeptide chain of 80 kD, containing one atom of iron. This protein bound ionic iron in vitro and was able to transfer this iron to ferritin when incubated with fat body in vitro. Therefore, it appeared to serve a transport function. The second protein had a molecular weight of 490 kD with subunits of 24 and 26 kD and contained 220 μg of iron/mg protein. Its chemical and ultrastructural characteristics were those of ferritin. These studies demonstrate the presence of both a transport protein and a unique circulating ferritin inManduca sexta, the latter serving a storage function during development and possibly also a transport function.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames GF (1974) Resolution of bacterial proteins by polyacrylamide gel electrophoresis on slabs. J Biol Chem 249:634–644Google Scholar
  2. Arosio P, Adelman TG, Drysdale JW (1978) On ferritin heterogeneity. Further evidence for heteropolymers. J Biol Chem 253:4451–4458Google Scholar
  3. Baba A (1969) Crystallization of ferritin from coelomics fluid ofCorbicula sandai with ammonium sulfate. J Biochem (Tokyo) 65:915–923Google Scholar
  4. Beckage NE, Riddiford LM (1982) Effects of parasitism byApanteles congregatus on the endocrine physiology of the tobacco hornworm,Mandyca sexta. Gen Comp Endocrinol 47:308–322Google Scholar
  5. Bell RA, Joachim FG (1976) Techniques for rearing laboratory colonies of tobacco hornworms and pink bollworms. Ann Entomol Soc Am 69:365–373Google Scholar
  6. Crichton RR (1973) Ferritin. Structure Bonding (Berlin) 17:67–134Google Scholar
  7. Curtis AT, Hori M, Green JM, Wolfgang WJ, Hiruma K, Riddiford LM (1984) Ecdysteroid regulation of the onset of cuticular melanization in allatectomized andblack mutantManduca sexta larvae. J Insect Physiol 30:597–606Google Scholar
  8. Eakins JD, Brown DA (1966) An improved method for the simultaneous determination of iron-55 and iron-59 in blood by liquid scintillation counting. Int J Appl Rad Isotopes 17:391–397Google Scholar
  9. Goodman WG, Adams B, Trost JT (1985) Purification and characterization of a biliverdins-associated protein from the hemolymph ofManduca sexta. Biochemistry 24:1168–1175Google Scholar
  10. Gourantan J (1967) Accumulation de ferritine dans les noyaux et le cytoplasme de certaines cellules du mesenteron chez des Homoptères Cercopides agés. C Séanc Acad Sci 264:2657–2660Google Scholar
  11. Gourantan J, Folliot R (1968) Presence des cristaux de ferritine de grande taille dans les cellules de l'intestine moyen deCampylenchia latipes (Say). Rev Can Biol 27:77–81Google Scholar
  12. Granick S, Michaelis L (1943) Ferritin II. Apoferritin of horse spleen. J Biol Chem 147:91–97Google Scholar
  13. Greene FC, Feeney R (1968) Physical evidence for transferrins as single polypeptide chains. Biochemistry 7:1366–1371Google Scholar
  14. Harrison PM (1977) Ferritin: an iron storage molecule. Semin Hematol 14:55–70Google Scholar
  15. Heneine IF, Gazzinelli G, Tafuri WL (1969) Iron metabolism in the snailBiomphalaria glabratus: Uptake, storage, and transfer. Comp Biochem Physiol 28:391–399Google Scholar
  16. Huebers HA, Finch CA (1987) The physiology of transferrin and transferrin receptors. Physiol Rev 67:520–582Google Scholar
  17. Huebers HA, Huebers E, Crichton RR (1974) Isolation and characterization of rat mucosal ferritin. FEBS Lett 44:302–304Google Scholar
  18. Huebers HA, Huebers E, Finch CA, Martin AW (1982) Characterization of an invertebrate transferrin from the crabCancer magister (Arthropoda). J Comp Physiol 148:101–109Google Scholar
  19. Huebers H, Csiba E, Huebers E, Finch CA (1983) Competitive advantage of diferric transferrin in delivering iron to reticulocytes. Proc Nat Acad Sci USA 80:300–304Google Scholar
  20. Huebers H, Csiba E, Huebers E, Finch CA (1985) Molecular advantage of differric transferrin in delivering iron to reticulocytes: a comparative study. Proc Soc Exp Biol Med 179:222–226Google Scholar
  21. Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580Google Scholar
  22. Kim KS, Webb J, Macey DJ (1986) Properties and role of ferritin in the hemolymph of the chitonClavarizona hirtosa. Biochim Biophys Acta 884:387–394Google Scholar
  23. Kimura M, Sevens L, Maramorosch K (1975) Ferritin in insect vectors of the maize streak disease agent: electron microscopy and electron microprobe analysis. J Ultrastruc Res 53:366–375Google Scholar
  24. Kramer SJ, Mundall ED, Law JH (1980) Purification and properties of manducin, an amino acid storage protein of the haemolymphs of larval and pupalManduca sexta. Insect Biochem 10:279–288Google Scholar
  25. Laufberger V (1937) Sur la cristillisation de la ferritine. Bull Soc Chim Biol 19:1575–1582Google Scholar
  26. Lee MY, Huebers H, Martin AW, Finch CA (1978) Iron metabolism in a spider,Dugesiella hentzi. J Comp Physiol 127:349–354Google Scholar
  27. Lennox FG (1950) Studies of the physiology and toxicology of blowflies 7. A quantitative examination of the iron content ofLucilia cuprino. Council Sci Indust Res Australia, Pamphlet 102, pp 51–67Google Scholar
  28. Levenbook L (1985) Insect storage proteins. In: Kerkut GA, Gilbert LI (eds) Comparative insect physiology, biochemistry and pharmacology, vol 10. Pergamon Press, Oxford, pp 307–346Google Scholar
  29. Lindner E (1965) Ferritin und Hämoglobin im Chloragog von Lumbriciden (Oligochaeta). Z Zell 66:891–913Google Scholar
  30. Locke M, Leung H (1984) The induction and distribution of an insect ferritin — a new function for the endoplasmic reticulum. Tiss Cell 16:739–766Google Scholar
  31. Martin AW, Huebers HA, Huebers E, Finch CA (1982) Characterization of an invertebrate transferrin from a crab. In: Saltman P, Hegenauer J (eds) The biochemistry and physiology of iron. Elsevier, New York, pp 79–80Google Scholar
  32. Martin AW, Huebers E, Huebers H, Webb J, Finch CA (1984) A mono-sited transferrin from a representative deuterostome: the ascidian,Pyura stolonifera (Subphylum Urochordata). Blood 64:1047–1052Google Scholar
  33. Martin AW, Huebers E, Huebers H, Finch CA (1985) Iron binding proteins from the coelomic fluid of a holothurianCucumaria miniata. Proc 1st Int Conf Iron Metabolism and Transport, Tübingen, FRG, p 33Google Scholar
  34. Massover WH (1978) The ultrastructure of ferritin macromolecules III. Mineralized iron in ferritin is attached to the protein shell. J Mol Biol 123:721–726Google Scholar
  35. Mishra NK (1968) A note on the contribution of the hepatopancreas to the development of oocytes in the scorpion (Palmnaeus bengalensis). Experientia 24:260Google Scholar
  36. Poulson DF (1950) Chemical differentiation of the larval midgut of Drosophila. Genetics 35:130–131Google Scholar
  37. Riddiford LM, Curtis AT, Kiguchi K (1979) Culture of the epidermis of the tobacco hornwormManduca sexta. Tissue Culture Ass Man 5:975–985Google Scholar
  38. Riley CT, Barbeau BK, Keim PS, Kezdy FJ, Heinriksen RL, Law JH (1984) The covalent protein structure of insecticyanin, a blue biliprotein from the hemolymph of the tobacco hornworm,Manduca sexta. J Biol Chem 259:13159–13165Google Scholar
  39. Roche J, Bassis M, Breton-Gorius J, Stralin H (1961) Molecules d'hemoglobine et de ferritine dans les cellules chloragogenes d'Arenicola marina L. C r Soc Biol 155:1790–1803Google Scholar
  40. Shinjyo S (1973) Isolation and properties of ferritin from chicken (Gallus domesticus, Broiler) spleen. Seikagaku 45:289–295 (in Japanese)Google Scholar
  41. Smalley SR, Macey DJ, Potter JC (1986) Changes in the amount of nonhaem iron in the plasma, whole body, and selected organs during the postlarval life of the lampreyGeotria australis. J Exp Zool 237:149–157Google Scholar
  42. Theil EC (1987) Ferritin: structure, gene regulation and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–316Google Scholar
  43. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Nat Acad Sci USA 76:4350–4354Google Scholar
  44. Towe KM, Lowenstam HA, Nesson MH (1963) Invertebrate ferritin:Mollusca. Science 142:63–64Google Scholar
  45. Valaitis AP, Schaefer FV, Theil EC (1980) Changes in transferin during red cell replacement in Amphibia. Dev Biol 80:56–63Google Scholar
  46. Vulimiri L, Catsimpoolas N, Griffith AL, Lindner MC, Munro HH (1975) Size and charges heterogeneity of rat tissue ferritins. Biochem Biophys Acta 142:148–156Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • H. A. Huebers
    • 1
  • E. Huebers
    • 1
  • C. A. Finch
    • 1
  • B. A. Webb
    • 2
  • J. W. Truman
    • 2
  • L. M. Riddiford
    • 2
  • A. W. Martin
    • 2
  • W. H. Massover
    • 3
  1. 1.Department of MedicineUniversity of WashingtonSeattleUSA
  2. 2.Department of ZoologyUniversity of WashingtonSeattleUSA
  3. 3.Department of AnatomyUMDNJ, New Jersey Medical SchoolNewarkUSA

Personalised recommendations