, Volume 6, Issue 4, pp 265–274 | Cite as

Lignin degradation during softwood decaying by the ascomyceteChrysonilia sitophila

  • André Ferraz
  • Nelson Durán


SoftwoodPinus radiata was degraded by the ascomyceteChrysonilia sitophila during 3 months. The total weight loss of the wood was 20% and the carbohydrate and lignin losses were 18% and 25%, respectively. Decayed wood was extracted with solvents of increasing polarity. Methanol and dioxane yielded extracts containing representative low molecular weight degraded lignins. The overall structure of the degraded lignins, as shown by U.V./visible, I.R.,1H and13C NMR spectroscopy, GPC, functional group and elemental analyses, was compared with the structure of milled wood lignin extracted from undecayedP. radiata. The compilation of the data allows us to suggest oxidative Cα-Cβ and β-O-aryl cleavages for the mechanism of lignin degradation by this ascomycete. New saturated carbons on the side chain of the degraded lignins were detected. Based on these data a reductive ability of this microorganism was also suggested.

Key words

ascomycete Chrysonilia sitophila lignin biodegradation wood biodegradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler E & Marton J (1957) Zur Kenntnis der Carnylgrupen im Lignin I. Acta Chem. Scand. 13: 75–96Google Scholar
  2. ASTM methods (1966) Standard method f test for lignin in wood. pp. 396–398Google Scholar
  3. Browing BL (Ed) (1987) Methods of wood chemistry. John Wiley & Sons, NY, pp 660–665Google Scholar
  4. Campos V, Salas E, Durán N, Rodríguez J & Baeza J (1986) Isolation of cellulolyticChrysonilia sitophila fromTribolium ferrugineum. Bol. Micol. (Chile) 2: 161–165Google Scholar
  5. Chen CL & Robert D (1988) Characterization of lignin by1H-NMR and13C-NMR spectroscopy. Methods Enzymol. 161: 137–174Google Scholar
  6. Chua MGS, Chen CL, Chang HM & Kirk TK (1982)13C-NMR spectroscopy study of spruce lignin degraded byPhanerochaete chrysosporium. Holzforschung 36: 165–172Google Scholar
  7. Durán N, Rodriguez J, Ferraz A & Campos V (1987)Chrysonilia sitophila: A hyperligninolytic strain. Biotechnol. Lett. 9: 357–360Google Scholar
  8. Durán N, Rodríguez J & Ferrer I (1987b) Ligninases fromChrysonilia sitophila (TFB 27441 strain). Appl. Biochem. Biotechnol. 16: 157–163Google Scholar
  9. Durán N, Reyes J, Baeza J & Campos V (1988b) Biomass photochemistry XII. Chemical and photochemical pretreatment of rice hull and its fungal degradation. Biotechnol. Bioeng. 32: 564–568Google Scholar
  10. Eriksson K-LE, Blanchette RA & Ander P (Eds) (1990) Biodegradation of lignin. In: Microbial and enzymatic degradation of wood and wood components. Springer-Verlag, NY, pp 225–398Google Scholar
  11. Ferraz A & Durán N (1989) Effect of various conditions on theChrysonilia sitophila ‘TFB 27441 strain’ growth. Rev. Microbiol. (Brasil) 20: 240–245Google Scholar
  12. Ferraz A, Baeza J & Durán N (1991) Softwood biodegradation by an ascomyceteChrysonilia sitophila (TBF 27441 strain). Lett. Appl. Microbiol. 13: 82–86Google Scholar
  13. Freer J, Baeza J, Palma G, Campos V, Salas E, Ferraz A, Durán N (1991) Production of microbial protein from forest products. Biomass 23: 155–162Google Scholar
  14. Hemmingson JA (1983) The structure of lignin fromPinus radiata exploded wood. J. Wood Chem. Technol. 3: 289–312Google Scholar
  15. Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci. Technol. 24: 23–63Google Scholar
  16. Kirk TK & Chang HM (1974) Decomposition of lignin by white-rot fungi I. Isolation of heavily degraded lignin from decayed spruce. Holzforschung 28: 217–222Google Scholar
  17. —— (1975) Decomposition of lignin by white-rot fungi II. Characterization of heavily degraded lignin from decayed spruce. Holzforschung 29: 56–64Google Scholar
  18. Lenz BL (1968) Application of nuclear magnetic resonance spectroscopy to characterization of lignin. TAPPI 51: 511–519Google Scholar
  19. Mandels M, Andreotti R & Roche C (1976) Measurement of saccharifying cellulase. biotechnol. Bioeng. Symp. 6: 21–39Google Scholar
  20. Morck R & Kringstad KP (1985)13C-NMR spectra of Kraft lignins II. Kraft lignin acetates. Holzforschung 39: 109–119Google Scholar
  21. Nilsson T, Daniel G, Kirk TK & Obst JR (1989) Chemistry and microscopy of wood decay by some higher ascomycetes. Holzforschung 43: 11–18Google Scholar
  22. Nogueira RFP, Pilli RA & Durán N (1992) Degradation of β-O-4 lignin model and related compounds by the AscomyceteChrysonilia sitophila (TFB 27441 strain). Appl. Biochem. Biotechnol. 33: 169–176Google Scholar
  23. Robert D & Chen CL (1989) Biodegradation of lignin in spruce wood byPhanerochaete chrysosporium: Quantitative analysis of biodegraded spruce lignins by13C-NMR spectroscopy. Holzforschung 43: 323–333Google Scholar
  24. Rodríguez J & Durán N (1991) Lignosulfonate biodegradation byChrysonilia sitophila. Appl. Biochem. Biotechnol. 30: 185–192Google Scholar
  25. Tai DS, Terazawa M, Chen CL & Chang HM (1990) Lignin biodegradation products from birch wood byPhanerochaete chrysosporium. Holzforschung 44: 185–190Google Scholar
  26. Vanucci C, Fornier de Violet P, Bous-Laurent H & Castellan A (1988) A photophysical and photochemical study of a nonphenolic O-carbonyl β-O-4 lignin model dimer, 3,4-dimethoxy-O-(2′-methophenoxy) acetophenone. J. Photochem. Photobiol. A: Chem. 41: 251–265Google Scholar
  27. Vicuna R (1988) Bacterial degradation of lignin. Enz. Microb. Technol. 10: 646–655Google Scholar
  28. Wexler AS (1964) Characterization of lignosulfonate by ultraviolet spectroscopy. Anal. Chem. 36: 213–221Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • André Ferraz
    • 1
  • Nelson Durán
    • 2
  1. 1.Centro de BiotecnologiaFaculdade de Engenharia Química de LorenaLorena, SPBrazil
  2. 2.Instituto de Química, Biological Chemistry LaboratoryUniversidade Estadual de CampinasCampinas, SPBrazil

Personalised recommendations