Skip to main content
Log in

Biodegradation of nitrobenzene by a sequential anaerobic-aerobic process

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Nitrobenzene was completely degraded by mixed cultures using a sequential anaerobic-aerobic treatment process. Under anaerobic conditions in a fixed-bed column aniline was formed from nitrobenzene through gratuitous reduction by cells of sewage sludge. This reaction was accelerated by the addition of glucose. Complete mineralization of aniline was accomplished by subsequent aerobic treatment using activated sludge as inoculum. The maximum degradation rate of nitrobenzene (4.5 mM) in the two-stage system was 552 mg l−1d−1, referring to 154 mg of nitrobenzene per gram of glucose. In a second experimental phase glucose as cosubstrate and H-donor was replaced by synthetic waste containing ethanol, methanol, isopropanol and acetone. Again, nitrobenzene (1.9 mM) was completely degraded (maximum degradation rate of 237 mg ld−1, referring to 251 mg per gram of solvents). The major advantage of the described two-stage process is that the reduction of nitrobenzene by anaerobic pretreatment drastically reduces emission by stripping during aerobic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HRT:

hydraulic retention time

OD546 :

optical density at 546 nm

References

  • Bergmeyer HU, Bernt U, Schmidt F & Stork H (1974) D-Glucose: Determination with hexokinase and glucose-6-phosphate dehydrogenase. In: Bergmeyer HU (Ed) Methods of Enzymatic Analysis, 2nd edn (pp 1196–1201). Verlag Chemie, Weinheim, Germany and Academic Press, New York, USA

    Google Scholar 

  • Beunik J & Rehm H-J (1990) Coupled reductive and oxidative degradation of 4-chloro-2-nitrophenol by a co-immobilized mixed culture system. Appl. Microbiol. Biotechnol. 34: 108–115

    Google Scholar 

  • Beutler H-O (1984) Ethanol. In: Bergmeyer HU (Ed) Methods of Enzymatic Analysis, 3d edn, Vol. VI (pp 598–606) Verlag Chemie, Weinheim, Germany and Academic Press, New York, USA

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254

    Google Scholar 

  • Bruhn C, Lenke H & Knackmuss H-J (1987) Nitrosubstituted aromatic compounds as nitrogen source for bacteria. Appl. Environ. Microbiol. 53: 208–210

    Google Scholar 

  • Dickel O & Knackmuss H-J (1991) Catabolism of 1,3-dinitrobenzene byRhodococcus sp. QT-1. Arch. Microbiol. 157: 76–79

    Google Scholar 

  • Dorn E & Knackmuss H-J (1978a) Chemical structure and biodegradability of halogenated aromatic compounds: two catechol 1,2-dioxygenases from a 3-chlorobenzoate grownPseudomonad. Biochem. J. 174: 73–84

    Google Scholar 

  • —— (1978b) Chemical structure and biodegradability of halogenated aromatic compounds: substituent effects on 1,2-dioxygenation of catechol. Biochem. J. 174: 85–94.

    Google Scholar 

  • Gomolka E & Gomolka B (1979) Ability of activated sludge to degrade nitrobenzene in municipal wastewater. Acta Hydrochim. Hydrobiol. 7: 605–622

    Google Scholar 

  • Haas R & von Löw E (1986) Grundwasserbelastung durch eine Altlast. Die Folgen einer ehemaligen Sprengstoffproduktion für die heutige Trinkwassergewinnung. Forum Städte-Hygiene 37: 33–43

    Google Scholar 

  • Haigler BE & Spain JC (1991) Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways. Appl. Environ. Microbiol. 57: 3156–3162

    Google Scholar 

  • Hallas LE & Alexander M (1983) Microbial transformation of nitroaromatic compounds in sewage effluent. Appl. Environ. Microbiol. 45: 1234–1241

    Google Scholar 

  • Haug W, Schmidt A, Nörtemann B, Hempel DC, Stolz A & Knackmuss H-J (1991) Mineralization of the sulfonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium. Appl. Environ. Microbiol. 57: 3144–3149

    Google Scholar 

  • Leisinger, T & Brunner W (1986) Poorly degradable substances. In: Rehm H-J & Reed G (Eds) Biotechnology, Vol. 8 (pp 475–513). Verlag Chemie, Weinheim, Germany

    Google Scholar 

  • Lenenberger C, Czuczwa J, Tremp J & Giger W (1988) Nitrated phenols in rain: Atmospheric occurrence of phytotoxic pollutants. Chemosphere 17: 511–515

    Google Scholar 

  • Nakazawa T & Yokota T (1973) Benzoate metabolism inPseudomonas putida (arvilla) mt-2: demonstration of two benzoate pathways. J. Bacteriol. 115: 262–267

    Google Scholar 

  • Nishino SF & Spain J (1993) Degradation of nitrobenzene by aPseudomonas speudoalcaligenes. Appl. Environ. Microbiol. 59: 2520–2525.

    Google Scholar 

  • Nozaki M (1970) Metapyrocatechase (Pseudomonas). In: Tabor H & Tabor CW (Eds) Methods in Enzymology, Vol 17A (pp 522–525). Academic Press, New York, USA

    Google Scholar 

  • Patil SS & Shinde VM (1988) Biodegradation studies of aniline and nitrobenzene in aniline plant wastewater by gas chromatography. Environ. Sci. Technol. 22: 1160–1165

    Google Scholar 

  • Patil SS & Shinde VM (1989) Gas chromatographic studies on the biodegradation of nitrobenzene and 2,4-dinitrophenol in the nitrobenzene plant wastewater. Environ. Poll. 57: 235–250

    Google Scholar 

  • Pitter P (1976) Determination of biological degradability of organic substances. Water Res. 10: 231–235

    Google Scholar 

  • Rippen G, Zietz E, Frank R, Knacker T & Klöpffer W (1987) Do airborne nitrophenols contribute to forest decline? Environ. Technol. Lett. 8: 475–482

    Google Scholar 

  • Schmidt E & Schmidt FW (1983) Glutamate Dehydrogenase. In: Bergmeyer HU (Ed) Methods of Enzymatic Analysis, 3d edn, Vol III (pp 216–227). Verlag Chemie, Weinheim, Germany and Academic Press, New York, USA

    Google Scholar 

  • Schmidt E, Hellwig M & Knackmuss H-J (1983) Degradation of chlorophenols by a defined mixed microbial community. Appl. Environ. Microbiol. 36: 1038–1044

    Google Scholar 

  • Schmidt K, Liaaen Jensen S & Schlegel HG (1963) Die Carotinoide der Thiorhodaceae. I Okenon als Hauptcarotinoid vonChromatium okenii Perty. Arch. Mikrobiol. 46: 117–126

    Google Scholar 

  • Sedmak JJ & Grossberg SE (1977) A rapid, sensitive and versatile assay for protein using Coomassie Brilliant Blue G 250. Anal. Biochem. 79: 544–552

    Google Scholar 

  • Spanggord RJ, Spain JC, Nishino SF & Mortelmans KE (1991) Biodegradation of 2,4-dinitrotoluene by aPseudomonas sp. Appl. Environ. Microbiol. 57: 3200–3205

    Google Scholar 

  • Wirth W, Hecht G & Gloxhuber C (1971) Toxikologie-Fiebel (pp 264–266). Georg Thieme Verlag, Stuttgart, Germany

    Google Scholar 

  • Zoeteman BCJ, Harmsen K, Linders JBHJ, Morra CFH & Slooff M (1980) Persistent organic pollutants in river water and ground water of the Netherlands. Chemosphere 9: 231–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickel, O., Haug, W. & Knackmuss, HJ. Biodegradation of nitrobenzene by a sequential anaerobic-aerobic process. Biodegradation 4, 187–194 (1993). https://doi.org/10.1007/BF00695121

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00695121

Key words

Navigation