Biodegradation

, Volume 4, Issue 3, pp 171–178 | Cite as

Purification of two isofunctional hydrolases (EC 3.7.1.8) in the degradative pathway for dibenzofuran inSphingomonas sp. strain RW1

  • Patricia V. Bünz
  • Rocco Falchetto
  • Alasdair M. Cook
Article

Abstract

Sphingomonas sp. strain RW1, when grown in salicylate-salts medium, synthesized the enzymes for the degradation of dibenzofuran. The reaction subsequent tometa cleavage of the first benzene ring was found to be catalyzed by two isofunctional hydrolases, H1 and H2, which were purified by chromatography on anion exchange, hydrophobic interaction and gel filtration media. Each enzyme was able to hydrolze 2-hydroxy-6-oxo-6-(2-hydroxyphenyl)hexa-2,4-dienoate and 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate to produce salicylate and benzoate, respectively. SDS/PAGE of each purified enzyme showed a single band ofM r 31 000 (H1) or 29 000 (H2). The N-terminal amino acid sequences of the two proteins showed 50% homology.

Key words

dibenzofuran metabolism of dibenzofuran pathway intermediates 2,2′,3-trihydroxybiphenyl meta cleavage enzymes hydrolysis of a C-C bond (EC 3.7.1.8) HOHPDA hydrolases (EC 3.7.1.8) 

Abbreviations

DHB

2,3-dihydroxybiphenyl

DSM

German Culture Collection (Braunschweig)

FPLC

protein liquid chromatograph(y)

HOHPDA

2-hydroxy-6-oxo-6-(2-hydroxyphenyl)hexa-2,4-dienoate

HOPDA

2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate

THB

2,2′,3-trihydroxybiphenyl

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad D, Sylvestre M, Sondossi M & Massé R (1991) Bioconversion of 2-hydroxy-6-oxo-6-(4′-chlorophenyl)hexa-2,4-dienoic acid, themeta-cleavage product of 4-chlorobiphenyl. J. Gen. Microbiol. 137:1375–1385Google Scholar
  2. Bayly RC & Di Berardino D (1978) Purification and properties of 2-hydroxy-6-oxo-2,4-heptadienoate hydrolase from two strains ofPseudomonas putida. J. Bacteriol. 134: 30–37Google Scholar
  3. Bird JA & Cain RB (1974) Microbial degradation of alkylbenzenesulfonates: metabolism of homologues of short alkylchain length by anAlcaligenes sp. Biochem. J. 140: 121–134Google Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254Google Scholar
  5. Bünz PV & Cook AM (1993) Dibenzofuran 4,4a-dioxygenase fromSphingomonas sp. strain RW1: angular dioxygenation by a three-component enzyme system. J. Bacteriol. In PressGoogle Scholar
  6. Correll CC, Batie CJ, Ballou DP & Ludwig ML (1992) Phthalate dioxygenase reductase: a modular structure for electron transfer from pyridine nucleotides to [2Fe-2S]. Science 258: 1604–1610Google Scholar
  7. Drews G (1983) Mikrobiologisches Praktikum, 4th ed. Springer BerlinGoogle Scholar
  8. Duggleby CJ & Williams PA (1986) Purification and some properties of the 2-hydroxy-6-oxahepta-2,4-dienoate hydrolase (2-hydroxymuconate semialdehyde hydrolase) encoded by the TOL plasmid pWW0 fromPseudomonas putida mt2. J. Gen. Microbiol. 132: 717–726Google Scholar
  9. Engesser KH, Strubel V, Christoglou K, Fischer P & Rast HG (1989) Dioxygenolytic cleavage of aryl ether bonds: 1,10-dihydro-1,10-dihydroxyfluoren-9-one, a novel arene dihydrodiol as evidence for angular dioxygenation of dibenzofuran. FEMS Microbiol. Lett. 65: 205–210Google Scholar
  10. Fortnagel P, Harms H, Wittich R-M, Francke W, Krohn S & Meyer H (1989) Cleavage of dibenzofuran and dibenzodioxin ring systems by aPseudomonas bacterium. Naturwissenschaften 76: 222–223Google Scholar
  11. Fortnagel P, Harms H, Wittich R-M, Krohn S, Meyer H, Sinnwell V, Wilkes H & Francke W (1990) Metabolism of dibenzofuran byPseudomonas sp. HH69 and the mixed culture HH27. Appl. Environ. Microbiol. 56: 1148–1156Google Scholar
  12. Gibson DT, Roberts RL, Wells MC & Kobal VM (1973) Oxidation of biphenyl by aBeijerinkia species. Biochem. Biophys. Res. Commun. 50: 211–219Google Scholar
  13. Haddock JD, Nadim LM & Gibson DT (1993) Oxidation of biphenyl by a multicomponent enzyme system fromPseudomonas sp. strain LB400. J. Bacteriol. 175: 395–400Google Scholar
  14. Harayama S, Kok M & Neidle EL (1992) Functional and evolutionary relationships among diverse oxygenases. Annu. Rev. Microbiol. 46: 565–601Google Scholar
  15. Higson FK (1992) Microbial degradation of biphenyl and its derivatives. Adv. Appl. Microbiol. 37: 135–164Google Scholar
  16. Ishigooka H, Yoshida Y, Omori T & Minoda Y (1986) Enzymatic dioxygenation of biphenyl-2,3-diol and 3-isopropylcatechol. Agric. Biol. Chem. 50: 1045–1046Google Scholar
  17. Kohler H-PE, Schmid A & van der Maarel M (1993) Metabolism of 2,2′-dihydroxybiphenyl by Pseudomonas sp. strain HPB1: production and consumption of 2,2′,3-trihydroxybiphenyl. J. Bacteriol. 175: 1621–1628Google Scholar
  18. Laemmli UK (1970) Cleavage of structural proteins during the assemble of the head of bacteriophage T4. Nature (London) 227: 680–685Google Scholar
  19. Lipscomb JD, Whittaker JW, Arciero DM, Orville AM & Wolgel SA (1988) Mechanisms of catecholic dioxygenases. In: Hagedorn SR, Hanson RS & Kunz DA (Eds) Microbial Metabolism and the Carbon Cycle (pp 259–281). Harwood, ChurGoogle Scholar
  20. Locher HH, Leisinger T & Cook AM (1989) Degradation ofp-toluenesulphonic acid via sidechain oxidation, desulphonation andmeta ring cleavage inPseudomonas (Comamonas)testosteroni T-2. J. Gen. Microbiol. 135: 1969–1978Google Scholar
  21. —— (1991) 4-Sulphobenzoate 3,4-dioxygenase: purification and properties of a desulphonative two-component enzyme system fromComamonas testosteroni T-2. Biochem. J. 274: 833–842Google Scholar
  22. Mason JR & Cammack R (1992) The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu. Rev. Microbiol. 46: 277–305Google Scholar
  23. Merril CR, Goldman D & Van Keuren ML (1983) Silver staining methods for polyacrylamide gel electrophoresis. Methods Enzymol. 96: 230–239Google Scholar
  24. Omori T, Sugimura K, Ishigooka H & Minoda Y (1986a) Purification and some properties of a 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolyzing enzyme fromPseudomonas cruciviae S93B1 involved in the degradation of biphenyl, Agric. Biol. Chem. 50: 931–937Google Scholar
  25. Omori T, Ishigooka H & Minoda Y (1986b) Purification and some properties of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) reducing enzyme fromPseudomonas cruciviae S93 B1 involved in the degradation of biphenyl. Agric. Biol. Chem. 50: 1513–1518Google Scholar
  26. Strubel V, Engesser K-H, Fischer P & Knackmuss H-J (1991) 3-(2-Hydroxyphenyl)catechol as substrate for proximalmeta cleavage in dibenzofuran degradation byBrevibacterium sp. strain DPO 1361. J. Bacteriol. 173: 1932–1937Google Scholar
  27. Webb EC (1992) Enzyme nomenclature 1992. Academic Press, San DiegoGoogle Scholar
  28. Whitman CP, Aird BA, Gillespie WR & Stolowich NJ (1991) Chemical and enzymatic ketonization of 2-hydroxymuconate, a conjugated enol. J. Amer. Chem. Soc. 113: 3154–3162Google Scholar
  29. Wilkes H, Francke W, Wittich R-M, Harms H, Schmidt S & Fortnagel P (1992) Mechanistic investigations on microbial degradation of diaryl ethers: analysis of isotope labeled reaction products. Naturwissenschaften 79: 269–271Google Scholar
  30. Wittich R-M, Wilkes H, Sinnwell V, Francke W & Fortnagel P (1992) Metabolism of dibenzo-p-dioxin bySphingomonas sp. strain RW1. Appl. Environ. Microbiol. 58: 1005–1010Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Patricia V. Bünz
    • 1
    • 3
  • Rocco Falchetto
    • 2
  • Alasdair M. Cook
    • 1
  1. 1.Institute of Microbiology, Swiss Federal Institute of TechnologyETH-ZentrumZürichSwitzerland
  2. 2.Institute of Biochemistry, Swiss Federal Institute of TechnologyETH-ZentrumZürichSwitzerland
  3. 3.Institut für Allgemeine Botanik, Abteilung MikrobiologieUniversität HamburgHamburgGermany

Personalised recommendations