Journal of comparative physiology

, Volume 80, Issue 3, pp 255–266 | Cite as

Communication by surface waves

Mating behavior of a water strider (Gerridae)
  • R. Stimson Wilcox


  1. 1.

    During mating behavior males and females of an Australian species ofRhagadotarsus (Gerridae) communicate with patterned sequences of surface waves (signals) produced by leg movements (Figs. 1, 3). Individuals produce signals while free on the surface or while grasping floating or fixed objects; these objects then become copulation and oviposition sites (Fig. 2). Wave patterns are produced during precopulation, copulation, postcopulation, and aggression (Fig. 3). In the laboratory, mating behavior occurs diurnally, nocturnally and in total darkness.

  2. 2.

    Females were attracted and stimulated to oviposit by artificial precopulatory signals. Visual cues were shown not to be necessary for precopulatory behavior and oviposition to occur (Table 1).

  3. 3.

    Female response to artificial calling signals of different frequencies corresponded to the frequency range (approximately 17–29 waves/sec) present in male calling signals; and females discriminated a difference in frequency of 1.5–2.0 waves/ sec (Table 2).



Surface Wave Mating Behavior Wave Pattern Oviposition Site Behavior Male 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baerends, G. P.: Waarnemingen en proeven aan de ruggezwemmerNotonecta glauca. De levende natuur42, 11–17, 45–51 (1939).Google Scholar
  2. Cheng, L., Fernando, C. H.: A taxonomic study of the Malayan Gerridae (Hemiptera: Heteroptera) with notes on their biology and distribution. Oriental Insects3, 97–160 (1969).Google Scholar
  3. Hungerford, H. B., Matsuda, R.: Keys to subfamilies, tribes, genera and subgenera of the Gerridae of the world. Univ. Kans. Sci. Bull.41, 3–24 (1960).Google Scholar
  4. Markl, H., Wiese, K.: Die Empfindlichkeit des BückenschwimmersNotonecta glauca L. für Oberflächenwellen des Wassers. Z. vergl. Physiol.62, 413–420 (1969).Google Scholar
  5. Matsuda, R.: Morphology, evolution and a classification of the Gerridae (Hemiptera—Heteroptera). Univ. Kans. Sci. Bull.41, 25–632 (1960).Google Scholar
  6. Meyer, H. W.: Visuelle Schlüsselreize für die Auslösung der Beutefanghandlung beim BachwasserläuferVelia caprai (Hemiptera, Heteroptera). Z. vergl. Physiol.72, 260–297 (1971).Google Scholar
  7. Murphey, R. K.: Motor control of orientation of prey by the waterstrider,Gerris remiqis. Z. vergl. Physiol.72, 150–167 (1971).Google Scholar
  8. Murphey, R. K.: Sensory aspects of the control of orientation to prey by the waterstrider,Gerris remiqis. Z. vergl. Physiol.72, 168–185 (1971).Google Scholar
  9. Rabe, W.: Beiträge zum Orientierungsproblem der Wasserwanzen. Z. vergl. Physiol.35, 300–325 (1953).Google Scholar
  10. Rensing, L.: Beiträge zur vergleichenden Morphologie, Physiologie und Ethologie der Wasserläufer. Zool. Beitr. Berlin (N.F.)7, 447–485 (1961).Google Scholar
  11. Wiese, K.: Wahrnehmung von Oberflächenwellen geringer Amplitude durch den Wasserläufer. Naturwissenschaften56, 575 (1969).Google Scholar
  12. Wolda, H.: Response decrement in the prey catching activity ofNotonecta glauca L. (Hemiptera). Arch, neerl. Zool.14, 61–89 (1961).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • R. Stimson Wilcox
    • 1
  1. 1.Department of Zoology, School of General StudiesAustralian National UniversityAustralia

Personalised recommendations