Advertisement

Journal of comparative physiology

, Volume 89, Issue 2, pp 145–158 | Cite as

Respiratory adaptations to diving in the nile monitor lizard,Varanus niloticus

  • Stephen C. Wood
  • Kjell Johansen
Article

Summary

The objectives of this study included directin vivo measurements of circulating blood gases, pH, heart rate, and blood pressure during voluntary dives of unrestrained Nile monitor lizards. A Radiometer flow-through cuvette was employed for continuous recording of arterial PO2, PCO2 and pH. Hematological properties revealed no particular adaptations for diving. Mean values were: hematocrit = 24%; hemoglobin concentration = 7.1 g %; oxygen capacity = 9.3 vol %; red cell dimensions = 22×12 μ; red cell count = 0.67 million/μl. The respiratory properties of the blood, studiedin vitro andin vivo, show distinct adaptations to habitual diving. Oxygen affinity of blood is low (P50 = 42.4 mm Hg at pH 7.45, 25 °) and the dissociation curve is markedly sigmoid (n = 3.1). These features, coupled with a Bohr factor (Δ logP50/ΔpH) of −0.48, ensure increased utilization of oxygen while maintaining relatively high tissue PO2. Arterial pH decreases during diving from about 7.5 to 7.1 due to combined respiratory and metabolic acidosis. High plasma bicarbonate (30 mM/l at PCO2 = 25 mm Hg) and a buffering capacity of ΔH C3O/Δ pH = 18.9 mM/l increase the tolerance to this acidosis and prolong diving time. Thein vivo oxygen dissociation curve shows a 90 % depletion of arterial oxygen content during typical dives. Diving elicited a rapidly developing bradycardia with maximum of 85 % reduction in heart rate. The temperature sensitivity of HbO2 binding was very low (ΔH = −3kcal). This would minimize the HbO2 affinity increase accompanying the decrease in body temperature likely to occur in lizards going from sun basking to submergence in water.

Keywords

Metabolic Acidosis Dissociation Curve Typical Dive Arterial Oxygen Content Plasma Bicarbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altland, P. D.: Erythrocyte and hemoglobin values: Vertebrates other than man. In Respiration and circulation, (ed. P. L. Altman and D. S. Dittmer) 152 pp. Bethesda: Fed. Am. Soc. Bxp. Biol. 1971Google Scholar
  2. Andersen, H. T.: Physiological adjustments to prolonged diving in the American alligatorAlligator mississippiensis. Acta physiol. scand.53, 23–45 (1961)Google Scholar
  3. Andersen, H. T.: Physiological adaptations in diving vertebrates. Physiol. Rev.46, 212–243 (1966)Google Scholar
  4. Andersen, H. T., Løvø, A.: Indirect estimation of partial pressure of oxygen in arterial blood of diving ducks. Resp. Physiol.2, 163–167 (1967)Google Scholar
  5. Banerjee, V., Banerjee, M.: Seasonal variations of erythrocyte number and haemoglobin content in a common Indian lizard,Varanus monitor Linnaeus. Zool. Anz.182, 203–207 (1969)Google Scholar
  6. Belkin, D. A.: Anoxia: Tolerance in reptiles. Science139, 492–493 (1963)Google Scholar
  7. Bogert, C.: Thermoregulation in reptiles, a factor in evolution. Evolution3, 195–211 (1949)Google Scholar
  8. Clausen, G., Ersland, A.: The respiratory properties of the blood of two diving rodents, the beaver and the water vole. Resp. Physiol.5, 350–359 (1968)Google Scholar
  9. Clausen, G., Ersland, A.: Blood changes in the beaver during submersion. Resp. Physiol.11, 104–112 (1970)Google Scholar
  10. Dawson, W. R., Poulson, T. L.: Oxygen capacity of lizard bloods. Amer. Mid. Nat.68, 154–164 (1962)Google Scholar
  11. Dessauer, H. C.: Blood chemistry of reptiles. In: Biology of the reptilia, Vol. 3, p. 1–54 (eds. Carl Gans and T. S. Parsons). New York: Academic Press 1970Google Scholar
  12. Dill, D. B., Edwards, H. T.: Physicochemical properties of crocodile blood (Crocodilusacutus, Cuvier). J. biol. Chem.90, 515–530 (1931)Google Scholar
  13. Dill, D. B., Edwards, H. T.: Properties of reptilian blood IV. The alligator (Alligatormississippiensis Daudin). J. cell. comp. Physiol.6, 243–254 (1935)Google Scholar
  14. Edwards, M. J., Martin, R. T.: Mixing technique for the oxygen-hemoglobin equilibrium and Bohr effect. J. appl. Physiol.21, 1898–1902 (1967)Google Scholar
  15. Green, A. A., Redfield, A. C.: On the respiratory function of the blood of the porpoise. Biol. Bull.64, 44–52 (1933)Google Scholar
  16. Greenwald, O. E.: The effect of temperature on the oxygenation of gopher snake blood. Comp. Biochem. Physiol.40A, 865–870 (1971)Google Scholar
  17. Hashimoto, K., Yamaguchi, Y., Matsuvra, F.: Comparative studies on two hemoglobins of salmon IV. Oxygen dissociation curve. Bull Japan. Soc. Sci. Fisheries26, 827 (1960)Google Scholar
  18. Hathaway, W. E.: Erythrocyte and hemoglobin values: man. In: Respiration and circulation (eds. P. L. Altman and D. S. Dittmer), 147 pp. Bethesda: Fed. Am. Soc. Exp. Biol. 1971Google Scholar
  19. Hilpert, P., Fleischmann, R. G., Kempe, D., Bartels, H.: The Bohr effect related to blood and erythrocyte pH. Amer. J. Physiol.205, 337–340 (1963)Google Scholar
  20. Johansen, K., Lenfant, C.: A comparative approach to the adaptability of O2Hb affinity. In: Oxygen affinity of hemoglobin and red cell acid-base status (eds. M. Rorth and P. Astrup) p. 750–780). Copenhagen: Munksgaard 1972Google Scholar
  21. Johansen, K., Lenfant, C., Grigg, G. C.: Respiratory properties of blood and responses to diving of the platypus,Ornithorhynchus anatinus (Shaw). Comp. Biochem. Physiol.18, 597–608 (1966)Google Scholar
  22. Lenfant, C.: Physiological properties of blood of marine mammals. In: The biology of marine mammals (eds. H. T. Andersen) p. 95–115. New York: Academic Press 1969Google Scholar
  23. Lenfant, C., Johansen, K., Torrance, J. F.: Gas transport and oxygen storage capacity in some pinnepeds and the sea otter. Resp. Physiol.9, 277–286 (1970)Google Scholar
  24. Lenfant, C., Kooyman, G. L., Elsner, R., Drabek, C. M.: Respiratory function of blood of the Adelie penguin,Pygoscelis adeliae. Amer. J. Physiol.216, 1598–1600 1969Google Scholar
  25. Lenfant, C., Johansen, K., Petersen, J. A., Schmidt-Nielsen, K.: Respiration in the fresh water turtle,Ghelys fimbriata. Resp. Physiol.8, 261–275 (1970)Google Scholar
  26. Mertens, R.: Die Familie der Warane (Varanidae) Teil 1–3, Abh. Senck. Naturfor. Ges., Frankfurt (Main), S. 462–466 (1942)Google Scholar
  27. Millard, R. W., Johansen, K.: Ventricular outflow dynamics in the lizard,Varanus niloticus. Responses to hypoxia, hypercarbia and diving. J. exp. Biol. accepted for publication) (1974)Google Scholar
  28. Moberly, W. R.: The metabolic responses of the common iguana,Iguana iguana, to walking and diving. Comp. Biochem. Physiol.27, 21–32 (1968)Google Scholar
  29. Parer, J. T., Metcalfe, J.: Respiratory gas transport by blood in the monotremesplatypus and echnida. Physiologist9, 261 (1966)Google Scholar
  30. Pough, F. H.: Environmental adaptations in the blood of lizards. Comp. Biochem. Physiol.31, 885–901 (1969)Google Scholar
  31. Robin, E. D., Vester, J. W., Murdaugh, H. U., Jr., Millen, J. E.: Prolonged anaerobiosis in a vertebrate: Anaerobic metabolism in the fresh water turtle. J. cell. comp. Physiol.63, 287–297 (1964)Google Scholar
  32. Rossi-Fanelli, A., Antonini, E., Caputto, A.: Hemoglobin and myoglobin. In: Advances in protein chemistry (eds. C. B. Anfinsen, Jr., M. L. Anson, J. Edsall and F. M. Richards), vol. 19, p. 73–222. New York: Academic Press 1964Google Scholar
  33. Rossi-Fanelli, A., Antonini, E.: Oxygen equilibrium of hemoglobin from Thunnus thynnus. Nature Lond186, 895–896 (1960)Google Scholar
  34. Siggard-Andersen, O., Engel, K., Jorgensen, K., Astrup, P.: A micromethod for determination of pH, carbon dioxide tension, base excess and standard bicarbonate in capillary blood. Scand. J. clin. Lab. Invest.12, 172–176 (1960)Google Scholar
  35. Singer, R. B., Hernandez, T.: Acid-base balance of blood: Vertebrates in respiration and circulation (eds. P. L. Altman and D. S. Dittmer), Bethesda: Fed. Am. Soc. Exp. Biol. 226 pp. 1971Google Scholar
  36. Sullivan, B., Riggs, A.: Structure, function and evolution of turtle hemoglobins III. Oxygenation properties. Comp. Biochem. Physiol.23, 459–474 (1967)Google Scholar
  37. Weathers, W. W., White, F. N.: Hematological observations on populations of the lizardSceloporus occidentalis from sea level and altitude. Herpetologica28, 172–175 (1972)Google Scholar
  38. White, F. N.: Respiration. In: Animal function: Principles and adaptations (eds. M. S. Gordon, G. A. Bartholomew, A. O. Grinnel, C. B. Jørgensen and F. F. White) Toronto: The MacMillen Co. 1968Google Scholar
  39. Wintrobe, M. M.: Clinical hematology. Philadelphia: Lea & Febiger 1956Google Scholar
  40. Wood, S. C., Moberly, W. R.: The influence of temperature on the respiratory properties of iguana blood. Resp. Physiol.10, 20–29 (1970)Google Scholar
  41. Wood, S. C., Johansen, K.: Adaptation to hypoxia by increased HbO2 affinity and decreased red cell ATP concentration. Nature (Lond.) New Biol.237, 278–279 (1972)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Stephen C. Wood
    • 1
    • 2
  • Kjell Johansen
    • 1
  1. 1.Department of ZoophysiologyAarhus UniversityAarhusDenmark
  2. 2.Department of Biological SciencesSouthern Illinois UniversityEdwardsvilleUSA

Personalised recommendations