Skip to main content
Log in

Highly selective and efficient multiphoton dissociation of polyatomic molecules in multiple-frequency IR-laser fields

  • Contributed Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An ir multiphoton dissociation (MPD) process in multiple-frequency ir-laser fields has been experimentally realized. A selectivity ofS=104 was obtained in separating13C/12C isotopes upon multiple-frequency ir multiphoton dissociation (MFMPD) of the CF2HCl molecule, the dissociation yield13β for the13CF2HCl molecule amounting to around 1%. A yield of13β was reached at a selectivity ofS=102, and the total laser fluence required for the process was reduced. A new mechanism—“sticking” of molecules on the lower discrete vibrational levels—responsible for the low MPD yields observed for some molecules is discussed and a technique to eliminate it and thus maximize the dissociation yields is proposed. Ways to improve the selectivity by MFMPD are analyzed and a simple method for obtaining from a single TEA CO2 laser a multiple-frequency radiation suitable for experimental realization of MFMPD is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.N. Bagratashvili, V.S. Letokhov, A.A. Makarov, E.A. Ryabov: Laser Chem.1, 21 (1983) and following issues

    Google Scholar 

  2. E.P. Velikhov, V.Yu. Baranov, V.S. Letokhov, E.A. Ryabov, A.N. Starostin:Power Pulsed CO 2 Lasers and their Application for Isotope Separation (Nauka, Moscow 1983)

    Google Scholar 

  3. V.S. Letokhov: InLaser Spectroscopy IV, ed. by H. Walther, K.W. Rotke, Springer Ser. Opt. Sci.21 (Springer, Berlin, Heidelberg, New York 1979) p. 504

    Google Scholar 

  4. R.V. Ambartzumian, N.P. Furzikov, Yu.A. Gorokhov, V.S. Letokhov, G.N. Makarov, A.A. Puretzky: JETP Lett.23, 217 (1976) (in Russian); Opt. Commun.18, 517 (1976)

    Google Scholar 

  5. R.V. Ambartzumian, Yu.A. Gorokhov, V.S. Letokhov, G.N. Makarov, A.A. Puretzky: JETP Lett.22, 177 (1975)

    Google Scholar 

  6. R.V. Ambartzumian, Yu.A. Gorokhov, V.S. Letokhov, G.N. Makarov, A.A. Puretzky: Phys. Lett.56A, 183 (1976)

    Google Scholar 

  7. J.L. Lyman, S.D. Rockwood: J. Appl. Phys.47, 595, 1976

    Google Scholar 

  8. J.J. Ritter, S.M. Freund: J. Chem. Soc. Chem. Commun. 811 (1976)

  9. M.C. Gower, K.W. Billman: Appl. Phys. Lett.30, 514 (1977)

    Google Scholar 

  10. J.J. Ritter: J. Am. Chem. Soc.100, 2441 (1978)

    Google Scholar 

  11. P. Fettweis, M. Nève de Mévergnies: J. Appl. Phys.49, 5699 (1978)

    Google Scholar 

  12. M. Nève de Mévergnies: Appl. Phys. Lett.34, 853 (1979)

    Google Scholar 

  13. J.-S.J. Chou, E.R. Grant: J. Chem. Phys.74, 5679 (1981)

    Google Scholar 

  14. W.S. Nip, P.A. Hackett, C. Willis: Can J. Chem.59, 2703 (1981)

    Google Scholar 

  15. D.S. King, J.C. Stephenson: J. Am. Chem. Soc.100, 7151 (1978)

    Google Scholar 

  16. S. Bittenson, P.L. Houston: J. Chem. Phys.67, 4819 (1977)

    Google Scholar 

  17. M. Drouin, M. Gauthier, R. Pilon, P.A. Hackett, C. Willis: Chem. Phys. Lett.60, 16 (1978)

    Google Scholar 

  18. V.N. Bagratashvili, V.S. Dolzhikov, V.S. Letokhov, E.A. Ryabov: Sov. Tech. Phys. Lett.4, 475 (1978) (in Russian)

    Google Scholar 

  19. V.N. Bagratashvili, V.S. Dolzhikov, V.S. Letokhov, E.A. Ryabov: Appl. Phys.20, 231 (1979)

    Google Scholar 

  20. G.I. Abdushelishvili, O.N. Avatkov, V.I. Andryushchenko, V.N. Bagratashvili, A.B. Bakhtadze, V.M. Vetsko, V.S. Dolzhikov, G.G. Esadze, V.S. Letokhov, E.A. Ryabov, G.I. Tkeshelashvili. Sov. Tech., Phys. Lett.5, 350 (1979) (in Russian)

    Google Scholar 

  21. W. Fuss, W.E. Schmid: Ber. Bunsenges. Phys. Chem.83, 1148 (1979)

    Google Scholar 

  22. G.I. Abdushelishvili, O.N. Avatkov, V.N. Bagratashvili, V.Yu. Baranov, A.B. Bakhtadze, E.P. Velikhov, V.M. Vetsko, I.G. Gverdtsiteli, V.S. Dolzhikov, G.G. Esadze, S.A. Kazakov, Yu.R. Kolomiiskii, V.S. Letokhov, S.V. Pigulskii, V.D. Pismennyi, E.A. Ryabov, G.I. Tkeshelashvili: Sov. J. Quantum Electron.9, 743 (1982) (in Russian)

    Google Scholar 

  23. H. Kojima, T. Fukumi, S. Nakajima, Y. Maruyama, K. Kosasa. Chem. Phys. Lett.95, 614 (1983)

    Google Scholar 

  24. M. Gauthier, P.A. Hackett, M. Drouin, R. Pilon, C. Willis: Can. J. Chem.56, 2227 (1978)

    Google Scholar 

  25. M. Gauthier, W.S. Nip, P.A. Hackett. C. Willis: Chem. Phys. Lett.69, 372 (1980)

    Google Scholar 

  26. P.A. Hackett, V. Malatesta, W.S. Nip, C. Willis, P.B. Corkum: J. Phys. Chem.85, 1152 (1981)

    Google Scholar 

  27. V.S. Dolzhikov, Yu.R. Kolomiiskii, E.A. Ryabov: Chem. Phys. Lett.80, 433 (1981)

    Google Scholar 

  28. S.K. Sarkar, V. Parthasarathy, A. Pandey, K.V.S. Rama Rao, J.P. Mittal: Chem. Phys. Lett.78, 479 (1981)

    Google Scholar 

  29. M. Nève de Mévergnies: Appl. Phys.25, 275 (1981)

    Google Scholar 

  30. P.A. Hackett, M. Gauthier, C. Willis, R. Pilon: J. Chem. Phys.71, 546 (1979)

    Google Scholar 

  31. P.A. Hackett, C. Willis, M. Gauthier: J. Chem. Phys.71, 2682 (1979)

    Google Scholar 

  32. P.A. Hackett, M. Gauthier, W.S. Nip, C. Willis: J. Phys. Chem.85, 1147 (1981)

    Google Scholar 

  33. M. Gauthier, C.G. Cureton, P.A. Hackett, C. Willis: Appl. Phys. B28, 43 (1982)

    Google Scholar 

  34. A.C. Baldwin, H. van den Bergh: J. Chem. Phys.74, 1012 (1981)

    Google Scholar 

  35. J.C. Stephenson, D.S. King, M.F. Goodman, J. Stone: J. Chem. Phys.70, 4496 (1979)

    Google Scholar 

  36. D.S. King, J.C. Stephenson: Chem. Phys. Lett.66, 33 (1979)

    Google Scholar 

  37. R.I. Martinez, R.E. Huie, J.T. Herron, W. Braun: J. Phys. Chem.84, 2344 (1980)

    Google Scholar 

  38. J.G. McLaughlin, M. Poliakoff, J.J. Turner: J. Mol. Struct.82, 51 (1982)

    Google Scholar 

  39. A.V. Evseev, A.A. Puretzky: To be published

  40. A.V. Evseev, A.A. Puretzky: Zh. Eksp. Teor. Fiz. (in Russian) (to be published)

  41. V.S. Letokhov, A.A. Makarov: Zh. Eksp. Teor. Fiz.63, 2064 (1972) (in Russian)

    Google Scholar 

  42. M. Quack, P. Humbert, H. van den Bergh: J. Chem. Phys.73, 247 (1980)

    Google Scholar 

  43. M. Quack, G. Seyfang: Chem. Phys. Lett.93, 442 (1982)

    Google Scholar 

  44. V.S. Letokhov, V.I. Mishin: Opt. Commun.29, 168 (1979)

    Google Scholar 

  45. V.S. Letokhov:Nonlinear Laser Chemistry, Springer Ser. Chem. Phys.22 (Springer, Berlin, Heidelberg, New York 1983)

    Google Scholar 

  46. Yu. R. Kolomiisky, V.S. Marchuk, E.A. Ryabov: Sov. J. Quantum Electron.9, 1768 (1982) (in Russian)

    Google Scholar 

  47. J. Stone, E. Thiele, M.F. Goodman, J.C. Stephenson, D.S. King: J. Chem. Phys.73, 2259 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evseev, A.V., Letokhov, V.S. & Puretzky, A.A. Highly selective and efficient multiphoton dissociation of polyatomic molecules in multiple-frequency IR-laser fields. Appl. Phys. B 36, 93–103 (1985). https://doi.org/10.1007/BF00694695

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694695

PACS

Navigation