Skip to main content
Log in

Arrhenius parameters of mitochondrial membrane respiratory enzymes in relation to thermoregulation in endotherms

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Summary

  1. 1.

    The relationship, between the body temperature (T b), the Arrhenius critical temperature (T *), and the apparent activation energy aboveT *) (E a1), of liver and heart mitochondrial respiratory enzymes from eleven homeothermic and eight heterothermic species was determined using a linear regression analysis.

  2. 2.

    An inverse relation was observed between,T * andE a1 during torpor and hibernation.

  3. 3.

    In all thermoregulatory states,T * decreased withT b andT * was equal to or belowT b.

  4. 4.

    During torporE a1 increased in a linear manner asT b was lowered.

  5. 5.

    It appears that the above Arrhenius parameters are closely linked to the thermoregulatory state of endotherms and thus may represent an, adaptation for function at lowT b's.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E a :

apparent activation energy

T * :

Arrhenius critical temperature

T b :

body temperature

References

  • Altman PL, Dittmer DS (1973) Biology data book, vol 2. Federation of American Societies for Experimental Biology, p 863

  • Augee ML (1978) Monotremes and homeothermy., In: Augee ML (ed) Monotreme biology. R Zool Soc New South Wales, pp 111–119

  • Augee ML, Pehowich DJ, Raison JK, Wang LCH (1984) Seasonal and temperature-related changes in mitochondrial membranes associated with torpor in the mammalian hibernatorSpermophilus richardsonii. Biochim Biophys Acta 776:27–36

    Google Scholar 

  • Borgman AJ, Moon TW (1976) Enzymes of the normothermic and hibernating bat,Myotis lucifugus: temperature as a modulator of pyruvate kinase. J Comp Physiol 107:185–199

    Google Scholar 

  • Chaffee RRJ (1962) Mitochondrial changes during the process of awakening from hibernation. Nature 196:789–790

    Google Scholar 

  • Dawson TJ Hulbert AJ (1970) Standard metabolism, body temperature, and surface area of Australian marsupials. Am J Physiol 218:1233–1238

    Google Scholar 

  • Geiser F, Augee ML, Raison JK (1984a) Thermal response of liver mitochondrial membranes of two insectivorous mammals: a bat and a small marsupial. In: Hales JRS (ed) Thermal physiology, Raven Press, New York, pp 453–456

    Google Scholar 

  • Geiser F, Augee ML, Raison JK (1984b) Thermal response of liver mitochondrial membranes of the heterothermic batMiniopterus schreibersii, in summer and winter. J Therm Biol 9:183–188

    Google Scholar 

  • Geiser F, Augee ML, McCarron HCK, Raison JK (1984c) Correlates of torpor in the insectivorous marsupialSminthopsis murina. Aust Mammalogy 7

  • Geiser F, McMurchie EJ (1984) Differences in the thermotropic behaviour of mitochondrial membrane respiratory enzymes from homeothermic and heterothermic endotherms. J Comp Physiol B 155:125–133

    Google Scholar 

  • Hall LS (1982) The effect of cave microclimate on winter roosting behaviour in the bat,Miniopterus schreibersii blepotis. Aust J Ecol 7:129–136

    Google Scholar 

  • Innis SM, Clandinin MT (1981) Dynamic modulation of mitochondrial membrane physical, properties and ATPase activity by diet lipids. Biochem J 198:167–175

    Google Scholar 

  • Keith AD, Aloia RA, Lyons J, Snipes W, Pengelley ET (1975) Spin label evidence for the role of lysoglycerophosphatides in cellular membranes of hibernating mammals. Biochim Biophys Acta 394:204–210

    Google Scholar 

  • Kemp A Jr, Groot GSP, Reitsma HJ (1969) Oxidative phosphorylation as a function of temperature. Biochim Biophys Acta 180:28–34

    Google Scholar 

  • Klein RA (1982) Thermodynamics and membrane processes. Q Rev Biophys 15:667–757

    Google Scholar 

  • Kulzer E, Nelson JE, McKean JL, Möhres FP (1970) Untersuchungen über die Temperaturregulation australischer Fledermäuse (Microchiroptera). Z Vergl Physiol 69:426–451

    Google Scholar 

  • Lyons JM, Raison JK (1970) A temperature-induced transition in mitochondrial oxidation: contrasts between cold and warm blooded animals. Comp Biochem Physiol 37:405–411

    Google Scholar 

  • McMurchie EJ, Raison JK, Cairncross KD (1973) Temperature-induced phase changes in membranes of heart: a contrast between the thermal response of poikilotherms and homeotherms. Comp Biochem Physiol 44B:1017–1026

    Google Scholar 

  • McMurchie EJ, Raison JK (1975) Hibernation and homeothermic status of the echidna (Tachyglossus aculeatus). J Therm Biol 1:113–118

    Google Scholar 

  • McMurchie EJ, Raison JK (1979) Membrane lipid fluidity and its effect on the activation energy of membrane-associated enzymes. Biochim Biophys Acta 554:364–374

    Google Scholar 

  • McMurchie EJ, Gibson RA, Abeywardena MY, Charnock JS (1983a) Dietary lipid modulation of rat liver mitochondrial succinate: cytochromec reductase. Biochim Biophys Acta 727:163–169

    Google Scholar 

  • McMurchie EJ, Abeywardena MY, Charnock JS, Gibson RA (1983b) Differential modulation of rat heart mitochondrial membrane-associated enzymes by dietary lipids. Biochim Biophys Acta 760:13–24

    Google Scholar 

  • McMurchie EJ, Abeywardena MY, Charnock JS, Gibson RA (1983c) The effect of dietary lipids on the thermotropic behaviour of rat liver and heart mitochondrial membrane lipids. Biochim Biophys Acta 734:114–124

    Google Scholar 

  • Pehowich DJ, Wang LCH (1981) Temperature dependence of mitochondrial Ca2+-transport in hibernating and non-hibernating ground squirrels. Acta Univ Carol Biol 1979:291–293

    Google Scholar 

  • Pehowich DJ, Wang LCH (1984) Seasonal changes in mitochondrial succinate dehydrogenase activity in a hibernator,Spermophilus richardsonii. J Comp Physiol B 154:495–501

    Google Scholar 

  • Raison JK, Lyons JM (1971) Hibernation: alteration of mitochondrial membranes as a requisite for metabolism at low temperature. Proc Natl Acad Sci USA 68:2092–2094

    Google Scholar 

  • Raison JK, Lyons JM, Mehlhorn RJ, Keith AD (1971) Temperature-induced phase changes in mitochondrial membranes detected by spin labelling. J Biol Chem 246:4036–4040

    Google Scholar 

  • Raison JK, McMurchie EJ (1974) Two temperature induced changes in mitochondrial membranes detected by spin labelling and enzyme kinetics. Biochim Biophys Acta 363:135–140

    Google Scholar 

  • Robblee NM, Clandinin MT (1984) Effect, of dietary fat level and polyunsaturated fatty acid content on the phospholipid composition of rat cardiac mitochondrial membranes and mitochondrial ATPase activity. J Nutr 114:263–269

    Google Scholar 

  • Roberts JC, Arine RM, Rochelle RH, Chaffee RRJ (1972) Effect of temperature on oxidative phosphorylation of liver mitochondria from hamster, rat and squirrel monkey. Comp Biochem Physiol 41B:127–131

    Google Scholar 

  • Rübsamen K, Hume ID, Foley WJ, Rübsamen U (1984) Implications of the large surface area to body mass ratio on the heat balance of the greater glider (Petauroides volans: Marsupialia). J Comp Physiol B 154:105–111

    Google Scholar 

  • Silvius JR, McElhaney RM (1980) Membrane lipid physical state and modulation of Na+Mg++-ATPase activity inAcholeplasma laidlawii B. Proc Natl Acad Sci USA 77:1255–1259

    Google Scholar 

  • Southard JH, van der Laan N Chr, Lutz M, Pavlock GS, Belzer JP, Belzer FO (1983) Comparison of the effect of temperature on kidney cortex mitochondria from rabbit, dog, pig and human: Arrhenius plots of ADP-stimulated respiration. Cryobiol 20:395–400

    Google Scholar 

  • Wallis R (1976) Torpor in the dasyurid marsupialAntechinus stuartii. Comp Biochem Physiol 53A:319–322

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Present address: University of Washington, Department of Zoology, Seattle, WA 98195, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiser, F., McMurchie, E.J. Arrhenius parameters of mitochondrial membrane respiratory enzymes in relation to thermoregulation in endotherms. J Comp Physiol B 155, 711–715 (1985). https://doi.org/10.1007/BF00694585

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694585

Keywords

Navigation