Journal of comparative physiology

, Volume 83, Issue 1, pp 1–16 | Cite as

Acetylcholine as sensory transmitter in crustacea

New evidence from experiments demonstrating release of ACh during sensory stimulation
  • Ernst Florey


  1. 1.

    A method is described for the perfusion of the thoracic ganglia of crabs (Cancer, Pugettia, Portunus, Callinectes, Eriphia) through the sternal artery.

  2. 2.

    Administration of acetylcholine (ACh)via perfusion elicits leg movements. The effect is enhanced by the anticholinesterase eserine. Eserine alone causes great enhancement of reflex activity.

  3. 3.

    Eserinized perfusate collected during periods of sensory stimulation (optical or tactile stimuli) contained ACh as detected by bioassay on isolated mollusc ventricles. Up to 2 × 10−9 g of ACh were liberated per minute. No ACh was detectable in perfusates collected from quiescent, unstimulated crabs (detection limit 1−10 × 10−11g/ml) or from stimulated crabs when the perfusion fluid contained no eserine. Eserine itself had no effect on the heart preparations used.

  4. 4.

    The demonstration of a release of ACh from the central nervous system of crabs during sensory stimulation represents the last missing link in the evidence (which is fully reviewed) that ACh is the transmitter substance of sensory neurons in decapod crustacea and, presumably, in other arthropod groups as well.



Acetylcholine Tactile Stimulus Sensory Stimulation Reflex Activity Great Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.

    Es wird eine Methode beschrieben, die es erlaubt, die Thorakalganglien von Krabben (Cancer, Pugettia, Portunus, Callinectes, Eriphia) über die Sternal-Arterie zu perfundieren.

  2. 2.

    Applikation von Azetylcholinvia Perfusion ruft Beinbewegungen hervor. Diese Wirkung wird verstärkt durch Eserin (Cholinesterasehemmer). Eserin selbst bewirkt eine erhebliche Verstärkung der Reflexaktivität.

  3. 3.

    Eserinisiertes Perfusat, das während Perioden optischer oder mechanischer Reizung gewonnen wurde, enthielt ACh, das im Biotest an isolierten Ventrikeln von Mollusken nachgewiesen werden konnte. Bis zu 2 × 10−9 g ACh wurden pro Minute freigesetzt. In Perfusaten, die von ungereizten, ruhenden Krabben oder von gereizten Krabben erhalten wurden, wenn die Perfusionsflüssigkeit kein Eserin enthielt, konnte kein ACh nachgewiesen werden (Nachweisgrenze l −10 × 10−11 g/ml).

  4. 4.

    Der Nachweis der Freisetzung von ACh im Zentralnervensystem von Krabben während sensorischer Reizung liefert das letzte noch fehlende Glied in der Beweisführung (die in der Arbeit ausführlich dokumentiert wird), daß ACh die Transmitter-Substanz der sensorischen Neurone der dekapoden Krebse, und vermutlich auch der anderen Arthropodengruppen, darstellt.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barker, D. L., Herbert, E., Hildebrand, J. G., Kravitz, E. A.: Acetylcholine and lobster sensory neurones. J. Physiol. (Lond.), in press (1972).Google Scholar
  2. Birks, R., Macintosh, F. C.: Acetylcholine metabolism of a sympathetic ganglion. Canad. J. Biochem.39, 787–827 (1961).Google Scholar
  3. Bonnet, V.: Contribution à l'étude du système nerveux ganglionnaire des crustacés. Arch. int. Physiol.47, 397–433 (1938).Google Scholar
  4. Bullock, T. H., Grundfest, H., Nachmansohn, D., Rothenburg, M. A.: Effect of di-isopropyl fluorphosphate (DFP) on action potential and cholinesterase of nerve, II. J. Neurophysiol.10, 63–78 (1947).Google Scholar
  5. Callec, J., Boistel, J.: Les effects de l'acétylcholine aux niveaux synaptique et somatique dans le cas dernier ganglion abdominal de la Blatte,Periplaneta americana. C. R. Soc. Biol. (Paris)161, 157–181 (1967).Google Scholar
  6. Case, J.: Properties of the dactyl chemoreeeptors ofCancer antennarius Stimpson andC. productus Randall. Biol. Bull.127, 428–446 (1964).Google Scholar
  7. Chiang, P. K.: Some pharmacological properties of the nerve cord of the cockroach,Periplaneta americana (L.). Questiones entomol.5, 263–306 (1969).Google Scholar
  8. Colhoun, E. H.: The physiological significance of acetylcholine in insects and observations upon other pharmacologically active substances. Adv. Insect Physiol.1, 1–46 (1963).Google Scholar
  9. Easton, D. M.: Synthesis of acetylcholine in crustacean nerve and nerve extract. J. biol. Chem.185, 813–816 (1950).Google Scholar
  10. Ellis, C. H., Thienes, C. H., Wiersma, C. A. G.: The influence of certain drugs on the crustacean nerve-muscle system. Biol. Bull.83, 334–352 (1942).Google Scholar
  11. Evoy, W., Beránek, R.: Pharmacological localization of excitatory and inhibitory synaptic regions in crayfish slow abdominal flexor muscle-fibres. Comp. gen. Pharmac.3, 178–186 (1972).Google Scholar
  12. Fatt, P., Katz, B.: The electrical properties of crustacean muscle fibres. J. Physiol. (Lond.)120, 171–204 (1953).Google Scholar
  13. Elattum, R. F., Friedman, S., Larsen, J. R.: The effects of d-tubocurare chloride on nervous activity and muscular contraction in the house cricketAcheta domesticus (L.). Life Sci.6, 1–9 (1967).Google Scholar
  14. Florey, E.: Comparative neurochemistry: inorganic ions, amino acids and possible transmitter substances of invertebrates. In: Neurochemistry, 2nd ed., p. 673–693, ed. Elliott, K. A. C., I. H. Page and J. H. Quastel. Springfield, Ill.: C. C. Thomas 1962.Google Scholar
  15. Florey, E.: Acetylcholine in invertebrate nervous systems. Canad. J. Biochem. Physiol.41, 2619–2626 (1963).Google Scholar
  16. Florey, E.: The clam-heart bioassay for acetylcholine. Comp. Biochem. Physiol.20, 365–377 (1967).Google Scholar
  17. Florey, E., Biederman, M. A.: Studies on the distribution of Factor I and acetylcholine in crustacean peripheral nerve. J. gen. Physiol.43, 509–522 (1960).Google Scholar
  18. Futamachi, K. J.: Acetylcholine: possible neuromuscular transmitter in Crustacea. Science172, 1373–1375 (1972).Google Scholar
  19. Gardiner, J. E.: The inhibition of acetylcholine synthesis in brain by hemicholinium. Biochem. J.81, 297–303 (1961).Google Scholar
  20. Hichar, J. K.: Spontaneous electrical activity in the crayfish central nervous system. J. cell. comp. Physiol.55, 195–206 (1960).Google Scholar
  21. Katz, B.: Neuromuscular transmission in crabs. J. Physiol. (Lond.)87, 199–221 (1936).Google Scholar
  22. Kerkut, G. A., Pittman, R. M., Walker, R. J.: Iontophoretic application of acetylcholine and GABA onto insect central neurones. Comp. Biochem. Physiol.31, 611–633 (1969).Google Scholar
  23. Keyl, M. J., Michaelson, I. A., Whittaker, V. P.: Physiologically active choline esters in certain marine gastropods and other invertebrates. J. Physiol. (Lond.)139, 434–454 (1957).Google Scholar
  24. Knowlton, F. P.: The action of certain drugs on crustacean muscle. J. Pharmacol. exp. Ther.75, 154–160 (1942).Google Scholar
  25. Larsen, J. R., Miller, D. A., Yamamoto, T.: d-Tubocurarine chloride: Effect on insects. Science152, 225–226 (1966).Google Scholar
  26. Marnay, A., Naohmansohn, D.: Cholinestérase dans le nerf de homard. C. R. Soc. Biol. (Paris)125, 1005 (1937).Google Scholar
  27. Maynard, E. A.: Microscopic localization of cholinesterases in the nervous systems of the lobsters,Panulirus argus andHomarus americanus. Tissue and Cell3, 215–250 (1971).Google Scholar
  28. McCann, F. V.: Curare as a neuromuscular blocking agent in insects. Science154, 1023–1024 (1966).Google Scholar
  29. McCann, F. V., Reece, R. W.: Neuromuscular transmission in insects: effect of injected chemical agents. Comp. Biochem. Physiol.21, 115–124 (1967).Google Scholar
  30. Prosser, C. L.: Action potentials in the nervous system of the crayfish. J. cell. comp. Physiol.16, 25–38 (1940).Google Scholar
  31. Richards, A. G., Cutkomp, L. K.: The cholinesterase of insect nerves. J. cell. comp. Physiol.26, 57–61 (1945).Google Scholar
  32. Riker, W. F., Okamoto, M.: Pharmacology of motor nerve terminals. Pharmacol. Rev.9, 173–208 (1969).Google Scholar
  33. Smallman, B. N.: Mechanism of acetylcholine synthesis in the blowfly. J. Physiol. (Lond.)132, 343–357 (1956).Google Scholar
  34. Sorenson, A. L.: Demonstration of an action of acetylcholine on the central nervous system of a crab. Biol. Bull., in press (1973).Google Scholar
  35. Tobias, J. M., Kollros, J. I., Savit, I.: Acetylcholine and related substances in the cockroach, fly and crayfish and the effect of DDT. J. cell. Comp. Physiol.28, 159–182 (1946).Google Scholar
  36. Treherne, J. E.: The neurochemistry of arthropods. 156 pp. Cambridge: University Press 1966.Google Scholar
  37. Turner, R. S., Hagins, W. A., Moore, A. R.: Influence of certain neurotropic substances on central and synaptic transmission inCallianassa. Proc. Soc. exp. Biol. (N.Y.)73, 156–518 (1950).Google Scholar
  38. Walop, J. N.: Studies on acetylcholine in the crustacean central nervous system. Arch. int. Physiol.59, 145–156 (1951).Google Scholar
  39. Welsh, J. H.: Occurrence of acetylcholine in nervous tissue of crustaceans and its effect on the crab heart. Nature (Lond.)142, 151 (1938).Google Scholar
  40. Welsh, J. H.: Chemical mediation in crustaceans. I. The occurrence of acetylcholine in nervous tissue and its action on the decapod heart. J. exp. Biol.16, 198–219 (1939).Google Scholar
  41. Welsh, J. H., Taub, R.: The action of acetylcholine antagonists on the heart ofVenus mercenaria. Brit. J. Pharmacol.8, 327–333 (1953).Google Scholar
  42. Wiersma, C. A. G., Pilgrim, R. L. C.: Thoracic stretch receptors in crayfish and rock lobsters. Comp. Biochem. Physiol.2, 51–64 (1961).Google Scholar
  43. Wiersma, C. A. G., Furshpan, E., Florey, E.: Physiological and pharmacological observations on muscle receptor organs of the crayfish,Cambarus clarkii Girard. J. exp. Biol.30, 136–150 (1953).Google Scholar
  44. Wright, E. B.: The action of erythroidin, curare, and chlorobutanol in the crayfish. J. cell. comp. Physiol.33, 301–332 (1949).Google Scholar
  45. Yamasaki, T., Narahashi, T.: Synaptic transmission in the last abdominal ganglion of the cockroach. J. Ins. Physiol.4, 1–13 (1960).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Ernst Florey
    • 1
  1. 1.Fachbereich BiologieUniversität KonstanzFRG

Personalised recommendations