Advertisement

Applied Physics B

, Volume 48, Issue 5, pp 437–443 | Cite as

Infrared laser multiple photon dissociation of thiophene in gas phase

  • A. K. Nayak
  • S. K. Sarkar
  • R. S. Karve
  • V. Parthasarathy
  • K. V. S. Rama Rao
  • J. P. Mittal
  • S. L. N. G. Krishnamachari
  • T. V. Venkitachalam
Contributed Papers

Abstract

Infrared laser multiple photon excitation/dissociation of Thiophene (Th) was studied as a function of Th pressure, laser pulse energy, pulse duration and added buffer gas. While the excitation process was probed via optoacoustic technique, the stable reaction products were analyzed by IR spectroscopy and mass spectrometry. Although C2H2 and CH3C≡CH were the major hydrocarbon products under all experimental conditions, the distribution of these, as well as higher hydrocarbons of lower yield, was found to be very much dependent upon the experimental conditions. The laser induced reaction under dielectric breakdown conditions with either high substrate pressure or laser energy produced significant amount of CS2 and unidentified polymer as well. We propose a mechanism involving breakage of the C−S bond in Th to form an unstable 1,5-diradical which further decomposed via different channels. However, at higher substrate pressures, radical-Th reactions complicated the overall chemistry of the system. Evidences for collisional energy-pooling and rotational hole-filling were also obtained.

PACS

82.50 33 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Braslavsky, J. Heicklen: Chem. Rev.77, 473–511 (1977)Google Scholar
  2. 2.
    A. Padwa: In: P. de Meyo (ed.):Rearrangements in Ground and Excited States, Vol. 3, pp. 502–547 in H.H. Wasserman (ed.). Organic Chemistry (Academic, New York 1980)Google Scholar
  3. 3.
    A. Lablache-Combier, M.A. Remy: Bull. Soc. Chim. Fr. 679–695 (1971)Google Scholar
  4. 4.
    E. Ratajczak, B. Sztuba, D. Price: J. Photochem.13, 233–242 (1980)Google Scholar
  5. 5.
    J.A. Baltrop, A.C. Day, R.W. Ward: J. Chem. Soc., Chem. Commun. 131–133 (1978)Google Scholar
  6. 6.
    Y. Kobayashi, I. Kumadaki, A. Oshawa, Y. Sekine: Tetrahedron Lett. 1639–1642 (1975)Google Scholar
  7. 7.
    D. Price, E. Ratajczk, B. Szutba, D. Saozynski: J. Photochem.37, 273–279 (1987)Google Scholar
  8. 8.
    H.A. Wiebe, J. Heicklen: Can. J. Chem.47, 2965–2979 (1969)Google Scholar
  9. 9.
    H.A. Wiebe, S. Braslavsky, J. Heicklen: Can. J. Chem.50, 2721–2724 (1972)Google Scholar
  10. 10.
    S.L.N.G. Krishnamachari, T.V. Venkitachalam: Chem. Phys. Lett.55, 116–118 (1978)Google Scholar
  11. 11.
    T. Shimanouchi: Tables of molecular vibrational frequencies, Consolidated volume 1, NSRDS-NBS 39 (1972)Google Scholar
  12. 12.
    S.K. Sarkar, V. Parthasarathy, K.V.S. Rama Rao, J.P. Mittal: J. Photochem.35, 13–21 (1986)Google Scholar
  13. 13.
    O.P. Judd: J. Chem. Phys.71, 4515–4530 (1979)Google Scholar
  14. 14.
    S.W. Benson: InThermochemical Kinetics (2nd ed.). (Wiley, New York 1976)Google Scholar
  15. 15.
    D.R. Stull, E.F. Westrum, Jr., G.C. Sinke: InThe Chemical Thermodynamics of Organic Compounds (Wiley, New York 1969)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • A. K. Nayak
    • 1
  • S. K. Sarkar
    • 1
  • R. S. Karve
    • 1
  • V. Parthasarathy
    • 1
  • K. V. S. Rama Rao
    • 1
  • J. P. Mittal
    • 1
  • S. L. N. G. Krishnamachari
    • 1
  • T. V. Venkitachalam
    • 1
  1. 1.Bhabha Atomic Research CentreBombayIndia

Personalised recommendations