Skip to main content

First-stage enrichment in CO2-laser-induced13C separation by a two-stage IRMPD process: IRMPD of CHClF2/Br2 mixtures


We have been studying the practical CO2-laser-induced13C separation by a two-stage IRMPD process. The IRMPD of natural CHClF2 in the presence of Br2 mainly produced CBr2F2, which was found to be highly enriched with13C. The yield and13C-atom fraction of CBr2F2 were examined as functions of pulse number, laser line, laser fluence, total pressure, and Br2 pressure using a CO2 TEA laser with an output less than 1 J pulse−1 in order to optimize experimental conditions for13C separation. For example, we obtained CBr2F2 at a13C concentration of 55% in the irradiation of the mixture of 100-Torr CHClF2 and 10-Torr Br2 with the laser radiation at a wavenumber of 1045.02 cm−1 and at a fluence of 3.4 J cm−2. The mechanism for the IRMPD is discussed on the basis of observed results. Using 8-J pulses, we were able to obtain 1.9×10−4 g of13C-enriched CBr2F2 (13C-atom fraction, 47%) per pulse under selected conditions. It is possible to produce 90% or higher13C by the second-stage IRMPD of the CBr2F2 in the presence of oxygen.

This is a preview of subscription content, access via your institution.


  1. 1.

    V.S. Letokhov:Nonlinear Laser Chemistry (Springer, Berlin, Heidelberg 1983) p. 252

    Google Scholar 

  2. 2.

    W. Fuss, W.E. Schmid: Ber. Bunsenges. Phys. Chem.83, 1148 (1979)

    Google Scholar 

  3. 3.

    M. Gauthier, C.G. Cureton, P.A. Hackett, C. Willis: Appl. Phys. B28, 43 (1982)

    Google Scholar 

  4. 4.

    G.I. Abdushelishvili, O.N. Avatkov, V.N. Bagratashvili, V.Yu. Baranov, A.B. Bakhtadze, E.P. Velikhov, V.M. Vetsko, I.G. Gverdtsitelii, V.S. Dolzhikov, G.G. Esadze, S.A. Kazakov, Yu.R. Kolomiiski, V.S. Letokhov, S.V. Pigul'skii, V.D. Pis'mennyi, E.A. Ryabov, G.I. Tkeshelashvili: Sov. J. Quant. Electron.12, 459 (1982)

    Google Scholar 

  5. 5.

    H. Kojima, T. Fukumi, S. Nakajima, Y. Maruyama, K. Kosasa: Appl. Phys. B30, 143 (1983)

    Google Scholar 

  6. 6.

    M. Gauthier, A. Outhouse, Y. Ishikawa, K.O. Kutschke, P.A. Hackett: Appl. Phys. B35, 173 (1984)

    Google Scholar 

  7. 7.

    A. Outhouse, P. Lawrence, M. Gauthier, P.A. Hackett: Appl. Phys. B36, 63 (1985)

    Google Scholar 

  8. 8.

    V.Yu. Baranov: IEEE J. QE-19, 1577 (1983)

    Google Scholar 

  9. 9.

    A.V. Evseev, V.S. Letokhov, A.A. Puretzky: Appl. Phys. B36, 93 (1985)

    Google Scholar 

  10. 10.

    M. Drouin, M. Gauthier, R. Pilon, P.A. Hackett, C. Willis: Chem. Phys. Lett.60, 16 (1978)

    Google Scholar 

  11. 11.

    T. Watanabe, T. Oyama, O. Hayashi, Y. Ishikawa, T. Ishii, S. Arai: Nippon Kagaku Kaishi, 1517 (1984)

  12. 12.

    S. Bittenson, P.L. Houston: J. Chem. Phys.67, 4819 (1977)

    Google Scholar 

  13. 13.

    H. Kojima, T. Fukumi, S. Nakajima, Y. Maruyama, K. Kosasa: Chem. Phys. Lett.95, 614 (1983)

    Google Scholar 

  14. 14.

    S. Arai, T. Watanabe, Y. Ishikawa, T. Oyama, O. Hayashi, T. Ishii: Chem. Phys. Lett.112, 224 (1984)

    Google Scholar 

  15. 15.

    P. Ma, K. Sugita, S. Arai: Chem. Phys. Lett.137, 590 (1987)

    Google Scholar 

  16. 16.

    S. Arai, K. Sugita, P. Ma, Y. Ishikawa, H. Kaetsu, S. Isomura: Chem. Phys. Lett.151, 516 (1988)

    Google Scholar 

  17. 17.

    J.G. McLaughlin, M. Poliakoff, J.J. Turner: J. Mol. Struc.82, 51 (1982)

    Google Scholar 

  18. 18.

    E. Grunwald, K.J. Olszyna, D.F. Dever, B. Knishkowy: J. Am. Chem. Soc.99, 6515 (1977)

    Google Scholar 

  19. 19.

    C.E. Decker, F.F. Cleveland, R.B. Bernstein: J. Chem. Phys.21, 189 (1953)

    Google Scholar 

  20. 20.

    C.E. Decker, A.G. Meister, F.F. Cleveland, R.B. Bernstein: J. Chem. Phys.21, 1781 (1953)

    Google Scholar 

  21. 21.

    Aa.S. Sudbø, P.A. Schulz, Y.R. Shen, Y.T. Lee: J. Chem. Phys.69, 2312 (1978)

    Google Scholar 

  22. 22.

    S. Popok, C.M. Lonzetta, E. Grunwald: J. Org. Chem.44, 2377 (1979)

    Google Scholar 

  23. 23.

    D.S.Y. Hsu, M.E. Umstead, M.C. Lin: ACS Symp. Ser.66, 128 (1978)

    Google Scholar 

  24. 24.

    J.W. Edwards, P.A. Small: Nature4939, 1329, June 27, 1964

    Google Scholar 

  25. 25.

    G.R. Barnes, R.A. Cox, R.F. Simmons. J. Chem. Soc. (B) 1176 (1971)

  26. 26.

    F.W. Dalby: J. Chem. Phys.41, 2297 (1964)

    Google Scholar 

  27. 27.

    W.J.R. Tyerman: Trans. Faraday Soc.65, 1188 (1969)

    Google Scholar 

  28. 28.

    K. Sugawara, T. Nakanaga, H. Takeo, C. Matsumura: Chem. Phys. Lett.134, 347 (1987)

    Google Scholar 

  29. 29.

    J.C. Stephenson, D.S. King: J. Chem. Phys.69, 1485 (1978)

    Google Scholar 

  30. 30.

    R.E. Kagarise, L.W. Daasch: J. Chem. Phys.23, 130 (1955)

    Google Scholar 

  31. 31.

    J.J. Ritter: J. Am. Chem. Soc.100, 2441 (1978)

    Google Scholar 

  32. 32.

    J.J. Ritter, S.M. Freund: J.C.S. Chem. Commun. 811 (1976)

  33. 33.

    W.S. Nip, P.A. Hackett, C. Willis: Can. J. Chem.59, 2703 (1981)

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arai, S., Sugita, K., Ma, P. et al. First-stage enrichment in CO2-laser-induced13C separation by a two-stage IRMPD process: IRMPD of CHClF2/Br2 mixtures. Appl. Phys. B 48, 427–435 (1989).

Download citation


  • 82.50
  • 33