Applied Physics B

, Volume 48, Issue 5, pp 427–435 | Cite as

First-stage enrichment in CO2-laser-induced13C separation by a two-stage IRMPD process: IRMPD of CHClF2/Br2 mixtures

  • S. Arai
  • K. Sugita
  • P. Ma
  • Y. Ishikawa
  • H. Kaetsu
  • S. Isomura
Contributed Papers


We have been studying the practical CO2-laser-induced13C separation by a two-stage IRMPD process. The IRMPD of natural CHClF2 in the presence of Br2 mainly produced CBr2F2, which was found to be highly enriched with13C. The yield and13C-atom fraction of CBr2F2 were examined as functions of pulse number, laser line, laser fluence, total pressure, and Br2 pressure using a CO2 TEA laser with an output less than 1 J pulse−1 in order to optimize experimental conditions for13C separation. For example, we obtained CBr2F2 at a13C concentration of 55% in the irradiation of the mixture of 100-Torr CHClF2 and 10-Torr Br2 with the laser radiation at a wavenumber of 1045.02 cm−1 and at a fluence of 3.4 J cm−2. The mechanism for the IRMPD is discussed on the basis of observed results. Using 8-J pulses, we were able to obtain 1.9×10−4 g of13C-enriched CBr2F2 (13C-atom fraction, 47%) per pulse under selected conditions. It is possible to produce 90% or higher13C by the second-stage IRMPD of the CBr2F2 in the presence of oxygen.


82.50 33 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.S. Letokhov:Nonlinear Laser Chemistry (Springer, Berlin, Heidelberg 1983) p. 252Google Scholar
  2. 2.
    W. Fuss, W.E. Schmid: Ber. Bunsenges. Phys. Chem.83, 1148 (1979)Google Scholar
  3. 3.
    M. Gauthier, C.G. Cureton, P.A. Hackett, C. Willis: Appl. Phys. B28, 43 (1982)Google Scholar
  4. 4.
    G.I. Abdushelishvili, O.N. Avatkov, V.N. Bagratashvili, V.Yu. Baranov, A.B. Bakhtadze, E.P. Velikhov, V.M. Vetsko, I.G. Gverdtsitelii, V.S. Dolzhikov, G.G. Esadze, S.A. Kazakov, Yu.R. Kolomiiski, V.S. Letokhov, S.V. Pigul'skii, V.D. Pis'mennyi, E.A. Ryabov, G.I. Tkeshelashvili: Sov. J. Quant. Electron.12, 459 (1982)Google Scholar
  5. 5.
    H. Kojima, T. Fukumi, S. Nakajima, Y. Maruyama, K. Kosasa: Appl. Phys. B30, 143 (1983)Google Scholar
  6. 6.
    M. Gauthier, A. Outhouse, Y. Ishikawa, K.O. Kutschke, P.A. Hackett: Appl. Phys. B35, 173 (1984)Google Scholar
  7. 7.
    A. Outhouse, P. Lawrence, M. Gauthier, P.A. Hackett: Appl. Phys. B36, 63 (1985)Google Scholar
  8. 8.
    V.Yu. Baranov: IEEE J. QE-19, 1577 (1983)Google Scholar
  9. 9.
    A.V. Evseev, V.S. Letokhov, A.A. Puretzky: Appl. Phys. B36, 93 (1985)Google Scholar
  10. 10.
    M. Drouin, M. Gauthier, R. Pilon, P.A. Hackett, C. Willis: Chem. Phys. Lett.60, 16 (1978)Google Scholar
  11. 11.
    T. Watanabe, T. Oyama, O. Hayashi, Y. Ishikawa, T. Ishii, S. Arai: Nippon Kagaku Kaishi, 1517 (1984)Google Scholar
  12. 12.
    S. Bittenson, P.L. Houston: J. Chem. Phys.67, 4819 (1977)Google Scholar
  13. 13.
    H. Kojima, T. Fukumi, S. Nakajima, Y. Maruyama, K. Kosasa: Chem. Phys. Lett.95, 614 (1983)Google Scholar
  14. 14.
    S. Arai, T. Watanabe, Y. Ishikawa, T. Oyama, O. Hayashi, T. Ishii: Chem. Phys. Lett.112, 224 (1984)Google Scholar
  15. 15.
    P. Ma, K. Sugita, S. Arai: Chem. Phys. Lett.137, 590 (1987)Google Scholar
  16. 16.
    S. Arai, K. Sugita, P. Ma, Y. Ishikawa, H. Kaetsu, S. Isomura: Chem. Phys. Lett.151, 516 (1988)Google Scholar
  17. 17.
    J.G. McLaughlin, M. Poliakoff, J.J. Turner: J. Mol. Struc.82, 51 (1982)Google Scholar
  18. 18.
    E. Grunwald, K.J. Olszyna, D.F. Dever, B. Knishkowy: J. Am. Chem. Soc.99, 6515 (1977)Google Scholar
  19. 19.
    C.E. Decker, F.F. Cleveland, R.B. Bernstein: J. Chem. Phys.21, 189 (1953)Google Scholar
  20. 20.
    C.E. Decker, A.G. Meister, F.F. Cleveland, R.B. Bernstein: J. Chem. Phys.21, 1781 (1953)Google Scholar
  21. 21.
    Aa.S. Sudbø, P.A. Schulz, Y.R. Shen, Y.T. Lee: J. Chem. Phys.69, 2312 (1978)Google Scholar
  22. 22.
    S. Popok, C.M. Lonzetta, E. Grunwald: J. Org. Chem.44, 2377 (1979)Google Scholar
  23. 23.
    D.S.Y. Hsu, M.E. Umstead, M.C. Lin: ACS Symp. Ser.66, 128 (1978)Google Scholar
  24. 24.
    J.W. Edwards, P.A. Small: Nature4939, 1329, June 27, 1964Google Scholar
  25. 25.
    G.R. Barnes, R.A. Cox, R.F. Simmons. J. Chem. Soc. (B) 1176 (1971)Google Scholar
  26. 26.
    F.W. Dalby: J. Chem. Phys.41, 2297 (1964)Google Scholar
  27. 27.
    W.J.R. Tyerman: Trans. Faraday Soc.65, 1188 (1969)Google Scholar
  28. 28.
    K. Sugawara, T. Nakanaga, H. Takeo, C. Matsumura: Chem. Phys. Lett.134, 347 (1987)Google Scholar
  29. 29.
    J.C. Stephenson, D.S. King: J. Chem. Phys.69, 1485 (1978)Google Scholar
  30. 30.
    R.E. Kagarise, L.W. Daasch: J. Chem. Phys.23, 130 (1955)Google Scholar
  31. 31.
    J.J. Ritter: J. Am. Chem. Soc.100, 2441 (1978)Google Scholar
  32. 32.
    J.J. Ritter, S.M. Freund: J.C.S. Chem. Commun. 811 (1976)Google Scholar
  33. 33.
    W.S. Nip, P.A. Hackett, C. Willis: Can. J. Chem.59, 2703 (1981)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • S. Arai
    • 1
  • K. Sugita
    • 2
  • P. Ma
    • 2
  • Y. Ishikawa
    • 2
  • H. Kaetsu
    • 2
  • S. Isomura
    • 2
  1. 1.Kyoto Institute of TechnologyKyotoJapan
  2. 2.The Institute of Physical and Chemical ResearchWako-shi, SaitamaJapan

Personalised recommendations