Advertisement

Journal of Atmospheric Chemistry

, Volume 18, Issue 1, pp 75–102 | Cite as

Product formation from the gas-phase reactions of OH radicals and O3 with a series of monoterpenes

  • Hannele Hakola
  • Janet Arey
  • Sara M. Aschmann
  • Roger Atkinson
Article

Abstract

The formation yields of nine carbonyl products are reported from the gas-phase OH radical-initiated reactions (in the presence of NO x ) and the O3 reactions with seven monoterpenes. The products were identified using GC/MS and GC-FTIR and quantified by GC-FID analyses of samples collected on Tenax solid adsorbent cartridges. The identities of products from camphene, limonene and β-pinene were confirmed by comparison with authentic standards. Sufficient quantities of products from the 3-carene, limonene, α-pinene, sabinene and terpinolene reactions were isolated to allow structural confirmation by proton NMR spectroscopy. The measured total carbonyl formation yields ranged from non-detectable for the OH radical reaction with camphene and the O3 reactions with 3-carene and limonene to ∼0.5 for the OH radical reaction with limonene and the O3 reaction with sabinene.

Key words

Monoterpenes OH radical reactions O3 reactions carbonyl products 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arey, J., Atkinson, R., and Aschmann, S. M., 1990, Product study of the gas-phase reactions of monoterpenes with the OH radical in the presence of NOx,J. Geophys Res. 95, 18539–18546.Google Scholar
  2. Arey, J., Winer, A. M., Atkinson, R., Aschmann, S. M., Long, W. D., and Morrison, C. L., 1991a, The emission of (Z)-3-hexen-1-ol, (Z)-3-hexenylacetate and other oxygenated hydrocarbons from agricultural plant species,Atmos. Environ. 25A, 1063–1075.Google Scholar
  3. Arey, J., Winer, A. M., Atkinson, R., Aschmann, S. M., Long, W. D., Morrison, C. L., and Olszyk, D. M., 1991b, Terpenes emitted from agricultural species found in California's Central Valley,J. Geophys. Res. 96, 9329–9336.Google Scholar
  4. Arey, J., Corchnoy, S. B., and Atkinson, R., 1991c, Emission of linalool from Valencia orange blossoms and its observation in ambient air,Atmos. Environ. 25A, 1377–1381.Google Scholar
  5. Atkinson, R., 1986, Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions,Chem. Rev. 86, 69–201.Google Scholar
  6. Atkinson, R., 1987, A structure-activity relationship for the estimation of rate constants for the gasphase reactions of OH radicals with organic compounds,Int. J. Chem. Kinet. 19, 799–828.Google Scholar
  7. Atkinson, R., 1989, Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds,J. Phys. Chem. Ref. Data Monograph 1, 1–246.Google Scholar
  8. Atkinson, R., 1991, Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with organic compounds,J. Phys. Chem. Ref. Data 20, 459–507.Google Scholar
  9. Atkinson, R., 1994, Gas-phase tropospheric chemistry of organic compounds,J. Phys. Chem. Ref. Data, Monograph 2, 1–216.Google Scholar
  10. Atkinson, R., Aschmann, S. M., Carter, W. P. L., Winer, A. M., and Pitts, J. N., Jr., 1982, Alkyl nitrate formation from the NOx-air photooxidations of C2–C8 n-alkanes,J. Phys. Chem. 86, 4563–4569.Google Scholar
  11. Atkinson, R. and Carter, W. P. L., 1984, Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions,Chem. Rev. 84, 437–470.Google Scholar
  12. Atkinson, R., Aschmann, S. M., Winer, A. M., and Pitts, J. N. Jr., 1984, Gas phase reactions of NO2 with alkenes and dialkenes,Int. J. Chem. Kinet. 16, 697–706.Google Scholar
  13. Atkinson, R., Aschmann, S. M., and Arey, J., 1990, Rate constants for the gas-phase reactions of OH and NO3 radicals and O3 with sabinene and camphene at 296±2 K,Atmos. Environ. 24A, 2647–2654.Google Scholar
  14. Atkinson, R., Aschmann, S. M., Arey, J., and Shorees, B., 1992, Formation of OH radicals in the gas phase reactions of O3 with a series of terpenes,J. Geophys. Res. 97, 6065–6073.Google Scholar
  15. Atkinson, R. and Aschmann, S. M., 1992, OH radical reaction rate constants for polycyclic alkanes: Effects of ring strain and consequences for estimation methods,Int. J. Chem. Kinet. 24, 983–989.Google Scholar
  16. Atkinson, R., and Aschmann, S. M., 1993, Atmospheric chemistry of the monoterpene reaction products nopinone, camphenilone, and 4-acetyl-1-methylcyclohexene,J. Atmos. Chem. 16, 337–348.Google Scholar
  17. Barnes, I., Bastian, V., Becker, K. H., and Tong, Z., 1990, Kinetics and products of the reactions of NO3 with monoalkenes, dialkenes, and monoterpenes,J. Phys. Chem. 94, 2413–2419.Google Scholar
  18. Becker, K. H., Brockmann, K. J., and Bechara, J., 1990, Production of hydrogen peroxide in forest air by reaction of ozone with terpenes,Nature 346, 256–258.Google Scholar
  19. Corchnoy, S. B., Arey, J., and Atkinson, R., 1992, Hydrocarbon emissions from twelve urban shade trees of the Los Angeles, California, Air Basin,Atmos. Environ. 26B, 339–348.Google Scholar
  20. Evans, R. C., Tingey, D. T., Gumpertz, M. L., and Burns, W. F., 1982, Estimates of isoprene and monoterpene emission rates in plants,Bot. Gaz. 143, 304–310.Google Scholar
  21. Gäb, S., Hellpointner, E., Turner, W. V., and Korte, F., 1985, Hydroxymethyl hydroperoxide and bis(hydroxymethyl) peroxide from gas-phase ozonolysis of naturally occurring alkenes,Nature 316, 535–536.Google Scholar
  22. Gaffney, J. S., Atkinson, R., and Pitts, J. N. Jr., 1976, Reaction of O(3P) atoms with toluene and 1-methylcyclohexene,J. Am. Chem. Soc. 98, 1828–1832.Google Scholar
  23. Grosjean, D., Williams, E. L. II, and Seinfeld, J. H., 1992, Atmospheric oxidation of selected terpenes and related carbonyls: Gas-phase carbonyl products,Environ. Sci. Technol. 26, 1526–1533.Google Scholar
  24. Guenther, A. B., Monson, R. K., and Falls, R., 1991, Isoprene and monoterpene emission rate variability: Observations with Eucalyptus and emission rate algorithm development,J. Geophys. Res. 96, 10799–10808.Google Scholar
  25. Hakola, H., Shorees, B., Arey, J., and Atkinson, R., 1993, Product formation from the gas-phase reactions of OH radicals and O3 with β-phellandrene,Environ. Sci. Technol. 27, 278–283.Google Scholar
  26. Hatakeyama, S., Izumi, K., Fukuyama, T., and Akimoto, H., 1989, Reactions of ozone with α-pinene and β-pinene in air: Yields of gaseous and particulate products,J. Geophys. Res. 94, 13013–13024.Google Scholar
  27. Hatakeyama, S., Izumi, K., Fukuyama, T., Akimoto, H., and Washida, N., 1991, Reactions of OH with α-pinene and β-pinene in air: Estimate of global CO production from the atmospheric oxidation of terpenes,J. Geophys. Res. 96, 947–958.Google Scholar
  28. Hewitt, C. N. and Kok, G. L., 1991, Formation and occurrence of organic hydroperoxides in the troposphere: Laboratory and field observations,J. Atmos. Chem. 12, 181–194.Google Scholar
  29. Isidorov, V. A., Zenkevich, I. G., and Ioffe, B. V., 1985, Volatile organic compounds in the atmosphere of forests,Atmos. Environ. 19, 1–8.Google Scholar
  30. Jay, K. and Stieglitz, L., 1988, Product analysis of the chemical/photochemical conversion of monoterpenes with airborne pollutants (O3/NO2), Comm. Eur. Communities,Air Pollut. Ecosyst., 542–527.Google Scholar
  31. Jay, K. and Stieglitz, L., 1989a, Gas phase ozonolysis of camphene in the presence of SO2,Atmos. Environ. 23, 1219–1221.Google Scholar
  32. Jay, K. and Stieglitz, L., 1989b, Identifizierung chemischer-photochemischer Umsetzungsprodukte von biogenen Kohlenwasserstoffen mit anthropogenen Luftschadstoffen (O3, NO2, SO2) KfK-PEF 53, Karlsruhe, F.R.G.Google Scholar
  33. Kotzias, D., Hjorth, J. L., and Skov, H., 1989, A chemical mechanism for dry deposition — the role of biogenic hydrocarbon (terpene) emissions in the dry deposition of O3, SO2 and NOx in forest areas,Toxicol. Environ. Chem. 20–21, 95–99.Google Scholar
  34. Kotzias, D., Nicollin, B., Duane, M., Daiber, R., Eijk, J. V., Rogora, L., and Schlitt, H., 1991, Carbonyls in the forest atmosphere — evidence for the monoterpene/ozone reaction,Naturwissensch. 78, 38–40.Google Scholar
  35. Lamb, B., Westberg, H., Allwine, G., and Quarles, T., 1985, Biogenic hydrocarbon emissions from deciduous and coniferous trees in the United States,J. Geophys. Res. 90 2380–2390.Google Scholar
  36. Lamb, B., Guenther, A., Gay, D., and Westberg, H., 1987, A national inventory of biogenic hydrocarbon emissions,Atmos. Environ. 21, 1695–1705.Google Scholar
  37. Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981, Tropospheric chemistry: A global perspective,J. Geophys. Res. 86, 7210–7254.Google Scholar
  38. Palen, E. J., Allen, D. T., Pandis, S. N., Paulson, S. E., Seinfeld, J. H., and Flagan, R. C., 1992, Fourier transform infrared analysis of aerosol formed in the photo-oxidation of isoprene and β-pinene,Atmos. Environ. 26A, 1239–1251.Google Scholar
  39. Pandis, S. N., Paulson, S. E., Seinfeld, J. H., and Flagan, R. C., 1991, Aerosol formation in the photooxidation of isoprene and β-pinene,Atmos. Environ. 25A, 997–1008.Google Scholar
  40. Paulson, S. E., Pandis, S. N., Baltensperger, U., Seinfeld, J. H., Flagan, R. C., Palen, E. J., Allen, D. T., Schaffner, C., Giger, W., and Portmann, A., 1990, Characterization of photochemical aerosols from biogenic hydrocarbons,J. Aerosol Sci. 21, S245-S248.Google Scholar
  41. Paulson, S. E., Flagan, R. C., and Seinfeld, J. H., 1992, Atmospheric photooxidation of isoprene. Part I: The hydroxyl radical and ground state atomic oxygen reactions,Int. J. Chem. Kinet. 24, 79–101.Google Scholar
  42. Rasmussen, R. A., 1972, What do the hydrocarbons from trees contribute to air pollution?J. Air Pollut. Control Assoc. 22, 537–543.Google Scholar
  43. Scanlon, J. T., and Willis, D. E., 1985, Calculation of flame ionization detector relative response factors using the effective carbon number concept,J. Chromat. Sci. 23, 333–340.Google Scholar
  44. Simonaitis, R. K., Olszyna, K. J., and Meagher, J. F., 1991, Production of hydrogen peroxide and organic peroxides in the gas phase reactions of ozone with natural alkenes,Geophys. Res. Lett. 18, 9–12.Google Scholar
  45. Taylor, W. D., Allston, T. D., Moscato, M. J., Fazekas, G. B., Kozlowski, R., and Takacs, G. A., 1980, Atmospheric photodissociation lifetimes for nitromethane, methyl nitrite, and methyl nitrate,Int. J. Chem. Kinet. 12, 231–240.Google Scholar
  46. Tingey, D. T., Manning, M., Grothaus, L. C., and Burns, W. F., 1979, The influence of light and temperature on isoprene emissions from Live Oak,Physiol. Plant 47, 112–118.Google Scholar
  47. Tingey, D. T., Manning, M., Grothaus, L. C., and Burns, W. F., 1980, Influence of light and temperature on monoterpene emission rates from Slash Pine,Plant Physiol. 65, 797–801.Google Scholar
  48. Winer, A. M., Arey, J., Atkinson, R., Aschmann, S. M., Long, W. D., Morrison, C. L., and Olszyk, D. M., 1992, Emission rates of organics from vegetation in California's Central Valley,Atmos. Environ. 26A, 2647–2659.Google Scholar
  49. WMO, 1992, ‘Scientific Assessment of Ozone Depletion: 1991’, World Meteorological Organization Global Ozone Research and Monitoring Project — Report No. 25, Geneva, Switzerland.Google Scholar
  50. Yokouchi, Y. and Ambe, Y., 1985, Aerosols formed from the chemical reaction of monoterpenes and ozone,Atmos. Environ. 19, 1271–1276.Google Scholar
  51. Zimmerman, P. R., 1979, Tampa Bay Area Photochemical Oxidant Study: Determination of emission rates of hydrocarbons from indigenous species of vegetation in the Tampa/St. Petersburg, Florida, area, Final Appendix C,Rep. EPA 904/9-77-028, Environmental Protection Agency, Atlanta, GA, February.Google Scholar
  52. Zimmerman, P. R., Greenberg, J. P., and Westberg, C. E., 1988, Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer,J. Geophys. Res. 93, 1407–1416.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Hannele Hakola
    • 1
  • Janet Arey
    • 2
    • 1
  • Sara M. Aschmann
    • 1
  • Roger Atkinson
    • 2
    • 1
  1. 1.Statewide Air Pollution Research CenterUniversity of CaliforniaRiversideUSA
  2. 2.Department of Soil and Environmental SciencesUniversity of CaliforniaRiversideUSA

Personalised recommendations