Journal of Atmospheric Chemistry

, Volume 18, Issue 1, pp 33–56 | Cite as

Measurements of trace gases emitted by Australian savanna fires during the 1990 dry season

  • Dale F. Hurst
  • David W. T. Griffith
  • John N. Carras
  • David J. Williams
  • Paul J. Fraser


During 18–23 July 1990, 31 smoke samples were collected from an aircraft flying at low altitudes through the plumes of tropical savanna fires in the Northern Territory, Australia. The excess (above background) mixing ratios of 17 different trace gases including CO2, CO, CH4, several non-methane hydrocarbons (NMHC), CH3CHO, NO x (− NO + NO2), NH3, N2O, HCN and total unspeciated NMHC and sulphur were measured. Emissionratios relative to excess CO2 and CO, and emissionfactors relative to the fuel carbon, nitrogen or sulphur content are determined for each measured species. The emission ratios and factors determined here for carbon-based gases, NO x , and N2O are in good agreement with those reported from other biomass burning studies. The ammonia data represent the first such measurements from savanna fires, and indicate that NH3 emissions are more than half the strength of NO x emissions. The emissions of NO x , NH3, N2O and HCN together represent only 27% of the volatilised fuel N, and are primarily NO x (16%) and NH3 (9%). Similarly, only 56% of the volatilised fuel S is accounted for by our measurements of total unspeciated sulphur.

Key words

Biomass burning savanna fires Australia atmospheric trace gases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackman, R. J., 1968, The flame ionization detector: Further comments on molecular breakdown and fundamental group responses,J. Gas Chromatogr. 6, 497–501.Google Scholar
  2. Andreae, M. O., Browell, E. V., Garstang, M., Gregory, G. L., Harriss, R. C., Hill, G. F., Jacob, D. J. Pereira, M. C., Sachse, G. W., Setzer, A. W., Dias, P. L. S., Talbot, R. W., Torres, A. L., and Wofsy, S. C., 1988, Biomass burning emissions and associated haze layers over Amazonia,J. Geophys. Res. 93, 1509–1527.Google Scholar
  3. Andreae, M. O., 1991, Biomass burning: Its history, use, and distribution and its impact on environmental quality and global climate, in J. S. Levine (ed.),Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, MIT Press, Cambridge, MA, pp. 3–21.Google Scholar
  4. Bingemer, H. G., Lobert, J. M., Schebeske, G., Scharffe, D., Andreae, M. O., and Crutzen, P. J., 1991, Biomass burning as a source of sulphur to the atmosphere,EOS Trans. AGU 72, 86.Google Scholar
  5. Bonsang, B., Lambert, G., and Boissard, C. C., 1991, Light hydrocarbons emissions from African savanna burnings, in J. S. Levine (ed.),Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, MIT Press, Cambridge, MA, pp. 155–161.Google Scholar
  6. Cheney, N. P., Raison, R. J., and Khanna, P. K., 1980, Release of carbon to the atmosphere in Australian vegetation fires, in G. I. Pearman (ed.),Carbon Dioxide and Climate: Australian Research, Australian Academy of Science, Canberra, pp. 153–158.Google Scholar
  7. Cofer, W. R. III, Levine, J. S., Winstead, E. L., and Stocks, B. J., 1991, New estimates of nitrous oxide emissions from biomass burning,Nature 349, 689–691.Google Scholar
  8. Cook, G. D. and Andrew, M. H., 1991, The nutrient capital of indigenousSorghum species and other understorey components of savannas in north-western Australia,Australian J. Ecology 16, 375–384.Google Scholar
  9. Cook, G. D., 1993, Nutrient fluxes during fires in a tropical savanna: quantities, mechanisms and possible long-term consequences, submitted toAustralian J. Ecology.Google Scholar
  10. Cooper, J. A., 1980, Environmental impact of residential wood combustion emissions and its implications,J. Air Poll. Cont. Assoc. 30, 855–861.Google Scholar
  11. Crutzen, P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H., and Seiler, W., 1979, Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS,Nature 282, 253–256.Google Scholar
  12. Crutzen, P. J., Delany, A. C., Greenberg, J., Haagenson, P., Heidt, L. E., Lueb, R., Pollock, W. H., Seiler, W., Wartburg, A., and Zimmerman, P., 1985, Tropospheric chemical composition measurements in Brazil during the dry season,J. Atmos. Chem. 2, 233–256.Google Scholar
  13. Crutzen, P. J. and Andreae, M. O., 1990, Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles,Science 250, 1669–1678.Google Scholar
  14. Delmas, R., 1982, On the emission of C, N and S in the atmosphere during bushfires in intertropical savannah zones,Geophys. Res. Lett. 7, 761–764.Google Scholar
  15. Delmas, R. A., Marenco, A., Tathy, J. P., Cros, B., and Baudet, J. G. R., 1991a, Sources and sinks of methane in the African savanna. CH4 emissions from biomass burning,J. Geophys. Res. 96, 7287–7299.Google Scholar
  16. Delmas, R. A., Lacaux, J. P., Abadie, L., LeRoux, X., Lobert, J., and Helas, G., 1991b, Nitrogen compounds emission from biomass burning in tropical African savanna (FOS/DECAFE 1991 Experiment),EOS Trans. AGU 72, 85–86.Google Scholar
  17. Evans, L. F., King, N. K., MacArthur, D. A., Packham, D. R., and Stephens, E. T., 1976, Further studies of the nature of bushfire smoke, Tech. Paper No. 2, CSIRO Div. Applied Org. Chem., Melbourne.Google Scholar
  18. Evans, L. F., Weeks, I. A., Eccleston, A. J., and Packham, D. R., 1977, Photochemical ozone in smoke from prescribed burning of forests,Environ. Sci. Technol. 11, 896–900.Google Scholar
  19. Fishman, J., Solomon, S., and Crutzen, P. J., 1979, Observational and theoretical evidence in support of a significant in situ photochemical source of tropospheric ozone,J. Geophys. Res. 88, 3662–3670.Google Scholar
  20. Fraser, P. J., Coram, S., and Derek, N., 1985, Atmospheric methane, carbon monoxide and carbon dioxide by gas chromatography, 1978–1985, in B. W. Forgan and P. J. Fraser (eds.),Baseline Atmospheric Program (Australia) 1985, Bureau of Meteorology in assoc. with CSIRO Division of Atmospheric Research, Melbourne, pp. 48–50.Google Scholar
  21. Galbally, I. E., 1985, Emission of nitrogen to the remote atmosphere, in J. N. Galloway, R. J. Charlson, M. O., Andreae and H. Rodhe (eds.),The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere, D. Reidel, Dordrecht, pp. 27–53.Google Scholar
  22. Galbally, I. E. and Gillett, R. W., 1988, Processes regulating nitrogen compounds in the tropical atmosphere, in H. Rodhe and R. Herrera (eds.),Acidification in Tropical Countries, SCOPE/Wiley, New York, pp. 73–116.Google Scholar
  23. Galbally, I. E., Fraser, P. J., Meyer, C. P., and Griffith, D. W. T., 1992, Biosphere-atmosphere exchange of trace gases over Australia, in R. M. Gifford and M. M. Barson (eds.),Australia's Renewable Resources: Sustainability and Global Change, Bureau f Rural Resource & CSIRO Division of Plant Industry, Canberra, pp. 117–149.Google Scholar
  24. Greenberg, J. P., Zimmerman, P. R., Heidt, L. E., and Pollock, W., 1984, Hydrocarbon and carbon monoxide emissions from biomass burning in Brazil,J. Geophys. Res. 89, 1350–1354.Google Scholar
  25. Griffith, D. W. T. and Schuster, G., 1987, Atmospheric trace gas analysis using matrix isolation Fourier transform infrared spectroscopy,J. Atmos. Chem. 5, 59–81.Google Scholar
  26. Griffith, D. W. T., Mankin, W. G., Coffey, M. T., Ward, D. E., and Riebau, A., 1991, FTIR remote sensing of biomass burning emissions of CO2, CO, CH4, CH2O, NO, NO2, NH3 and N2O, in J. S. Levine (ed.),Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, MIT Press, Cambridge, MA, pp. 230–239.Google Scholar
  27. Griffith, D. W. T., 1994, Matrix isolation spectroscopy in atmospherc chemistry, in M. W. Sigrist (ed.),Air Monitoring by Spectroscopic Techniques, (in press).Google Scholar
  28. Hao, W. M., Liu, M. H., and Crutzen, P. J., 1990, Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975–1980, in J. G. Goldammer (ed.),Fire in the Tropical Biota, Springer-Verlag, Heidelberg, pp. 440–462.Google Scholar
  29. Hao, W. M., Scharffe, D., Lobert, J. M., and Crutzen, P. J., 1991, Emissions of N2O from the burning of biomass in an experimental system,Geophys. Res. Lett. 18, 999–1002.Google Scholar
  30. Haynes, C. D., 1985, The pattern and ecology ofmunwag: traditional Aborigine fire regimes in north central Arnhemland,Proc. Ecological Society of Australia 13, 203–214.Google Scholar
  31. Hurst, D. F., Griffith, D. W. T., and Cook, G. D., 1993, manuscript in preparation.Google Scholar
  32. Kuhlbusch, T. A., Lobert, J. M., Crutzen, P. J., and Warneck, P., 1991, Molecular nitrogen emissions from denitrification during biomass burning,Nature 351, 135–137.Google Scholar
  33. Lacey, C. J., Walker, J., and Noble, I. R., 1982, Fire in Australian tropical savannas, in B. J. Huntley and B. H. Walker (eds.),Ecology of Tropical Savannas, Springer-Verlag, Berlin, pp. 246–272.Google Scholar
  34. Lobert, J. M., 1989, Verbrennungen plfanzlicher Biomasse als Quelle atmosphärische Spurengase: Cyanoverbindungen, CO, CO2 und NOx, Ph.D. Thesis, Johannes Gutenberg Universität, Mainz, Germany.Google Scholar
  35. Lobert, J. M., Scharffe, D. H., Hao, W. M., and Crutzen, P. J., 1990, Importance of biomass burning in the atmospheric budgets of nitrogen-containing gases,Nature 346, 552–554.Google Scholar
  36. Lobert, J. M., Scharffe, D. H., Hao, W. M., Kuhlbusch, T. A., Seuwen, R., Warneck, P., and Crutzen, P. J., 1991a, Experimental evaluation of biomass burning emissions: nitrogen and carbon containing compounds, in J. S. Levine (ed.),Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, MIT Press, Cambridge, MA, pp. 289–304.Google Scholar
  37. Lobert, J. M., Scharffe, D., Helas, G., and Schäfer, L., 1991b, Biomass burning in Cote d'Ivoire/Africa: airborne measurements of CO, CO2, NO2, CH4, and O3 during DECAFE 91,EOS Trans. AGU 85, 85.Google Scholar
  38. Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981, Tropospheric chemistry: A global perspective,J. Geophys. Res. 86, 7210–7254.Google Scholar
  39. Mott, J. J. and Andrew, M. H., 1983, The effect of fire on the population dynamics of native grasses of northwest Australia,Proc. Ecological Society of Australia 13, 231–240.Google Scholar
  40. Muzio, L. J. and Kramlich, J. C., 1988, An artifact in the measurement of N2O from combustion sources,Geophys. Res. Lett. 15, 1369–1372.Google Scholar
  41. Nguyen, B. C., Mihalopoulos, N., Bonsang, B., and Lacaux, J. P., 1991, OCS and SO2 emissions from African savanna burning,EOS Trans. AGU 72, 86.Google Scholar
  42. Norman, M. J. T. and Wetselaar, R., 1960, Losses of nitrogen on burning native pasture at Katherine, N.T.,J. Aust. Institute Agricultural Science 26, 272–273.Google Scholar
  43. Prinn, R., Cunnold, D., Rasmussen, R., Simmonds, P., Alyea, F., Crawford, A., Fraser, P., and Rosen, R., 1990, Atmospheric emissions and trends of nitrous oxide deduced from 10 years of ALE-GAGE data,J. Geophys. Res. 95, 18,369–18,385.Google Scholar
  44. Quay, P. D., King, S. L., Strutsman, J., Wilbur, D. O., Steele, L. P., Fung, I., Gammon, R. H., Brown, T. A., Farrell, G. W., Grootes, P. M., and Schmidt, F. H., 1991, Carbon isotopic composition of atmospheric CH4: Fossil and biomass burning source strengths,Global Biogeochemical Cycles 5, 25–47.Google Scholar
  45. Radke, L. F., Hegg, D. A., Lyons, J. H., Brock, C. A., Hobbs, P. V., Weiss, R., and Rasmussen, R. A., 1988, Airborne measurements on smokes from biomass burning, in P. V. Hobbs and M. P. McCormick (eds.),Aerosols and Climate, Deepak, Hampton, VA, pp. 411–422.Google Scholar
  46. Stocker, G. C. and Mott, J. J., 1981, Fire in the tropical forests and woodlands of northern Australia, in A. M. Gill, R. H. Groves and I. R. Noble (eds.),Fire and the Australian Biota, Australian Academy of Science, Canberra, pp. 425–439.Google Scholar
  47. Tassios, S. and Packham, D. R., 1985, The release of methyl chloride from biomass burning in Australia,J. Air Poll. Control. Assoc. 35, 41–42.Google Scholar
  48. Vines, R. G., Gibson, L., Hatch, A. B., King, N. K., MacArthur, D. A., and Packham, D. R., 1971, Tech. Paper No. 1, CSIRO Div. Applied Chem., Melbourne.Google Scholar
  49. Walker, J., 1981, Fuel dynamics in Australian vegetation, in A. M. Gill, R. H. Groves and I. R. Noble (eds.),Fire and the Australian Biota, Australian Academy of Science, Canberra, pp. 101–127.Google Scholar
  50. Wang, W. C., Yung, Y. L., Lacis, A. A., Mo. T., and Hansen, J. E., 1976, Greenhouse effect due to manmade perturbations of trace gases,Science 194, 685–690.Google Scholar
  51. Watson, C. E., Fishman, J., and Reichle, H. G. Jr., 1990, The significance of biomass burning as a source of carbon monixide and ozone in the southern hemisphere tropics: a satellite analysis,J. Geophys. Res. 95, 16,443–16,450.Google Scholar
  52. Wetselaar, R., 1980, Nitrogen cycling in a semi-arid region of tropical Australia, in T. Rosswall (ed.),Nitrogen Cycling in West African Ecosystems, SCOPE/International Nitrogen Unit, Stockholm, pp. 157–169.Google Scholar
  53. Wofsy, S. C., 1976, Interaction of CH4 and CO in the Earth's atmosphere,Ann. Rev. Earth Planet. Sci. 4, 441–469.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Dale F. Hurst
    • 1
  • David W. T. Griffith
    • 1
  • John N. Carras
    • 2
  • David J. Williams
    • 2
  • Paul J. Fraser
    • 3
  1. 1.Department of ChemistryUniversity of WollongongWollongongAustralia
  2. 2.CSIRO Division of Coal and Energy TechnologyNorth RydeAustralia
  3. 3.CSIRO Division of Atmospheric ResearchAspendaleAustralia

Personalised recommendations