Journal of comparative physiology

, Volume 85, Issue 3, pp 283–290 | Cite as

Gravity response from angular acceleration receptors inOctopus vulgaris

  • Bernd-Ulrich Budelmann
  • Heinz G. Wolff


  1. 1.

    Single and multi-fiber responses were recorded from the nerves of the angular acceleration receptors (crista) ofOctopus vulgaris under the following conditions: (i) animal stationary, (ii) during angular acceleration from different resting positions relative to gravity, and (iii) during rotation at constant angular velocity. Rotations were around earth-vertical and earth-horizontal axes.

  2. 2.

    In all experiments the discharge frequency of the receptor neurons varied as a function of the orientation of the crista with respect to gravity (Figs. 1, 2).

  3. 3.

    The preparation excluded the possibility of interaction between the crista being observed and other equilibrium receptors; also, the perilymph-endolymph mechanics were not changed. Therefore, it is hypothesized that the angular acceleration receptors ofOctopus are responsive to linear acceleration (gravity) in addition to their well established sensitivity to angular acceleration.



Semicircular Canal Angular Acceleration Linear Acceleration Constant Angular Velocity Impulse Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barber, V. C.: The fine structure of the statocyst ofOctopus vulgaris. Z. Zellforsch.70, 91–107 (1966)CrossRefGoogle Scholar
  2. Barber, V. C.: The structure of mollusc statocysts, with particular reference to cephalopods. Symp. Zool. Soc. London23, 37–62 (1968)Google Scholar
  3. Benson, A. J., Bodin, M. A.: Effect of orientation to the gravitational vertical on nystagmus following rotation about a horizontal axis. Acta oto-laryng. (Stockh.)61, 517–526 (1966)Google Scholar
  4. Benson, A. J., Guedry, F. E., Melvill Jones, G.: Response of semicircular canal dependent units in vestibular nuclei to rotation of a linear acceleration vector without angular acceleration. J. Physiol. (Lond.)210, 475–494 (1970)Google Scholar
  5. Budelmann, B.-U.: Die Arbeitsweise der Statolithenorgane vonOctopus vulgaris. Z. vergl. Physiol.70, 278–312 (1970)CrossRefGoogle Scholar
  6. Budelmann, B.-U., Barber, V. C., West, S.: Scanning electron microscopical studies of the arrangements and numbers of hair cells in the statocysts ofOctopus vulgaris, Sepia officinalis andLoligo vulgaris. Brain Res.56, 25–41 (1973)PubMedCrossRefGoogle Scholar
  7. Budelmann, B.-U., Wolff, H. G.: Electrophysiological study of the gravity receptors ofOctopus vulgaris. (In preparation 1973)Google Scholar
  8. Dijkgraaf, S.: The statocyst ofOctopus vulgaris as a rotation receptor. Pubbl. Staz. Zool. Napoli32, 64–87 (1961)Google Scholar
  9. Goldberg, J. M., Fernandez, C.: Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J. Neurophysiol.34, 635–660 (1971)PubMedGoogle Scholar
  10. Guedry, F. E.: Psychophysiological studies of vestibular function. In: Neff, W. D. (ed.), Contributions to sensory physiology, vol. 1, p. 63–135. New York-London: Academic Press 1965aGoogle Scholar
  11. Guedry, F. E.: Orientation of the rotation-axis to gravity: Its influence on nystagmus and the sensation of rotation. Acta oto-laryng. (Stockh.)60, 30–48 (1965b)CrossRefGoogle Scholar
  12. Janeke, J. B.: On nystagmus and otoliths. Thesis. Amsterdam: Cloeck en Moedigh 1968Google Scholar
  13. Jongkees, L. B. W.: Physiologie und Pathophysiologie des Vestibularorganes. Arch. klin. exp. Ohr.- Nas.- u. Kehlk.-Heilk.194, 1–110 (1969)CrossRefGoogle Scholar
  14. Lowenstein, O.: Electrophysiological experiments on the isolated surviving labyrinth of the elasmobranch fish to analyse the responses to linear accelerations. In: Stahle, J. (ed.), Vestibular function on earth and in space (Proc. Barany Society, Uppsala 1968), p. 35–41. Oxford-New York: Pergamon Press 1970Google Scholar
  15. Maturana, H. M., Sperling, S.: Unidirectional response to angular acceleration recorded from the middle cristal nerve in the statocyst ofOctopus vulgaris. Nature (Lond.)197, 815–816 (1963)CrossRefGoogle Scholar
  16. Udo de Haes, H. A., Schöne, H.: Interaction between statolith organs and semicircular canals on apparent vertical and nystagmus. Acta oto-laryng. (Stockh.)69, 25–31 (1970)Google Scholar
  17. Vinnikov, Y. A., Gasenko, O. G., Bronstein, A. A., Tsirulis, T. P., Ivanov, V. P., Pyatkina, G. A.: Structural, cytochemical and functional organization of statocysts of cephalopoda. Symposium on Neurobiology of Invertebrates, p. 29–48. Budapest: Akadémiai Kiadó 1967Google Scholar
  18. Wolff, H. G., Budelmann, B.-U.: Properties of angular acceleration receptors inOctopus vulgaris. (In preparation 1973a)Google Scholar
  19. Wolff, H. G., Budelmann, B.-U.: Electrical responses of theOctopus statocyst receptors to vibration. (In preparation 1973b)Google Scholar
  20. Young, J. Z.: The statocysts ofOctopus vulgaris. Proc. roy. Soc. B152, 3–29 (1960)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Bernd-Ulrich Budelmann
    • 1
    • 2
    • 3
  • Heinz G. Wolff
    • 1
    • 2
  1. 1.Max-Planck-Institut für VerhaltensphysiologieSeewiesen
  2. 2.Zoologisches Institut der Universität KölnDeutschland
  3. 3.Universität Regensburg Fachbereich Biologie IRegensburgFederal Republic of Germany

Personalised recommendations