Journal of comparative physiology

, Volume 90, Issue 4, pp 409–436 | Cite as

Responses of Purkinje cells in the cerebellum of the grassfrog (Rana temporaria) to somatic and visual stimuli

  • N. Dieringer


  1. 1.

    With direct electrical excitation of the radial and sciatic nerves, and of the forefoot and hindfoot by means of superficial electrodes, the depth profile of field potentials in 59 marked tracks and the activity of 207 single Purkinje cells in the cerebellum of curarized grassfrogs were measured.

  2. 2.

    The depth profile of the polarity of field potentials following somatic excitation of mossy fibers (MF) and climbing fibers (CF) corresponded to that in the cat: CF field potentials were negative in the molecular layer and positive in the granular layer. MF excitation produced an N2 potential in the granular layer and an N3 potential in the molecular layer (Fig. 2).

  3. 3.

    A somatotopic distribution of the MF-induced responses following somatic stimulation could be determined neither for field potentials nor for recordings from single cells. 84% of the Purkinje cells responded with MF action potentials to stimulation of two or more nerves. CF-responses of single Purkinje cells and CF field potentials following nerve stimulation appeared predominantly ipsilaterally in the ventral half of the cerebellum; a few responses lay in a narrow contralateral zone (200–400 μm lateral to the midline). Following stimulation of the foot, no contralateral CF-responses were found. 64% of the Purkinje cells responded only to stimulation of one of the nerves (most often the ipsilateral radial nerve), while 36% responded to stimulation of two or more (primarily ipsilateral) nerves (Figs. 8,9).

  4. 4.

    For stimulus intensities up to twice threshold, the latency histogram of the ipsilateral MF-responses of Purkinje cells exhibited two maxima with mean values at 36 msec (s, ±10 msec) and 76 msec (s, ±11 msec). The latency histogram for contralateral MF-responses lacked the second maximum (Fig. 6).

  5. 5.

    Stimulation of the eye by light produced excitation of Purkinje cells by way of both mossy fibers and climbing fibers. In 12 Purkinje cells (6%), MF-responses were observed. Of these, five cells had an on-response (mean latency, 138 msec;s, ±17.4 msec) and seven cells had an off-response (mean latency, 89 msec;s, ±13.8 msec; Fig. 13). CF-responses of the “on” or the “off” type appeared in seven and four Purkinje cells, respectively. On-responses had extremely variable latencies, between 200 and 500 msec (mean range of variation for any individual cell: 70 msec), while off-responses had a mean latency of 87 msec with very little scatter (s, ±6.3 msec; Figs. 14, 15).

  6. 6.

    Interaction of CF-responses was studied in three different conditions: with paired visual and somatic stimuli, with alternate stimulation of different somatic nerves, and during spontaneous discharge. In only one case was the interval between two CF-induced discharges of a Purkinje cell smaller than 200–300 msec (Figs. 10,16).

  7. 7.

    A comparison of the anatomical and functional properties of the climbing-fiber systems of cat and frog suggests that the neuronal interconnections within the two systems are similar.



Purkinje Cell Field Potential Molecular Layer Granular Layer Radial Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, D. M., Eccles, J. C., Harvey, R. J., Matthews, P. B. C.: Responses in the dorsal accessory of the cat to stimulation of hindlimb afferents. J. Physiol. (Lond.)194, 125–145 (1968)Google Scholar
  2. Armstrong, D. M., Harvey, R. J.: Responses in the inferior olive to stimulation of the cerebellar and cerebral cortices in the cat. J. Physiol. (Lond.)187, 553–574 (1966)Google Scholar
  3. Autrum, H., Zettler, F., Järvilehto, M.: Postsynaptic potentials from a monopolar neuron of the ganglion opticum I of the blowflyCalliphora. Z. vergl. Physiol.70, 414–424 (1970)Google Scholar
  4. Batini, C.: Afférences cérébelleuses d'origine olivaire. J. Physiol. (Paris)59, 342–343 (1967)Google Scholar
  5. Bell, C. C., Dow, R. S.: Cerebellar circuitry. Neurosciences Res. Prog. Bull.5, 121–222 (1967)Google Scholar
  6. Bloedel, J. R.: Discussion. In: Llinás, R. (ed.), Neurobiology of cerebellar evolution and development, p. 389–394. Chicago: Am. Med. Assoc. 1969Google Scholar
  7. Bloedel, J. R., Llinás, R.: Neuronal interactions in frog cerebellum. J. Neurophysiol.32, 871–880 (1969)Google Scholar
  8. Buchtel, H. A., Josif, G., Marchesi, G. F., Provini, L., Strata, P.: Analysis of the activity evoked in the cerebellar cortex by stimulation of the visual pathways. Exp. Brain Res.15, 278–288 (1972)Google Scholar
  9. Buser, P., Rougeul, A.: La réponse électrique du cervelet de pigeon à la stimulation de la voie optique et son analyse par microélectrodes. J. Physiol. (Paris)46, 287–291 (1954)Google Scholar
  10. Cajal, R. S.: La textura del sistema nervioso del hombre y los vertebrados. Madrid: Moya 1904Google Scholar
  11. Calne, D. B.: Pathways converging upon cells in the frog's cerebellum. J. Physiol. (Lond.)146, 459–464 (1959)Google Scholar
  12. Chang, H. -T., Wu, C. -P.: Optic activation of cerebellar and vestibular neurons in the toad. Science Record (Peking) New Ser.3, 640–644 (1959)Google Scholar
  13. Dodt, E., Heerd, E.: Mode of action of pineal nerve fibers in frogs. J. Neurophysiol.25, 405–429 (1962)Google Scholar
  14. Eccles, J. C., Llinás, R., Sasaki, U.: The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J. Physiol. (Lond.)182, 268–296 (1966)Google Scholar
  15. Eccles, J. C.: The development of the cerebellum of vertebrates in relation to the control of movement. Naturwissenschaften56, 525–534 (1969)Google Scholar
  16. Eccles, J. C., Ito, M., Szentágothai, J.: The cerebellum as a neuronal machine. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  17. Eccles, J. C., Provini, L., Strata, P., Táboříková, H.: Analysis of electrical potentials evoked in the cerebellar anterior lobe by stimulation of hindlimb and forelimb nerves. Exp. Brain Res.6, 171–194 (1968a)Google Scholar
  18. Eccles, J. C., Provini, L., Strata, P., Tabořiková, H.: Topographical investigations on the climbing fiber inputs from forelimb and hindlimb afferents to the cerebellar anterior lobe. Exp. Brain Res.6, 195–215 (1968b)Google Scholar
  19. Eccles, J. C., Sabah, N. H., Schmidt, R. F., Táboříková, H.: Cutaneous mechanoreceptors influencing impluse discharges in cerebellar cortex. III. In Purkyně cells by climbing fiber input. Exp. Brain Res.15, 484–497 (1972)Google Scholar
  20. Fadiga, E., Pupilli, G. C.: Teleceptive components of the cerebellar function. Physiol. Rev.44, 432–486 (1964)Google Scholar
  21. Goodman, D. C.: The evolution of cerebellar structure and function. Amer. Zool.4, 33–36 (1964)Google Scholar
  22. Gordon, M., Rubia, F. J., Strata, P.: The effect of pentothal on the activity evoked in the cerebellar cortex. Exp. Brain Res.17, 50–62 (1973)Google Scholar
  23. Granit, R., Phillips, C. G.: Excitatory and inhibitory processes acting upon individual Purkinje cells. J. Physiol. (Lond.)133, 520–547 (1956)Google Scholar
  24. Herrick, C. J.: Amphibian forebrain. III. The optic tracts and centers of amblystoma and the frog. J. comp. Neurol.39, 433–489 (1925)Google Scholar
  25. Hillman, D. E.: Morphological organisation of frog cerebellar cortex: a light and electron microscopic study. J. Neurophysiol.33, 818–846 (1969)Google Scholar
  26. Kappers, C. U. A., Huber, G. C., Crosby, E. C.: The comparative anatomy of the nervous system of vertebrates including man. New York: Hafner 1967Google Scholar
  27. Karamian, A. J., Fanardjian, V. V., Kosareva, A. A.: The functional and morphological evolution of the cerebellum and its role in behavior. In: Llinás, R. (ed.), Neurobiology of cerebellar evolution and development, p. 639–671. Chicago: Am. Med. Assoc. 1969Google Scholar
  28. Kreth, H.: Die markhaltigen Fasersysteme im Gehirn der Anuren und Urodelen und ihre Myelogenie. Z. mikr.-anat. Forsch.48, 192–285 (1940)Google Scholar
  29. Kreyszig, E.: Statistische Methoden und ihre Anwendungen. Göttingen: Vandenhoeck und Ruprecht 1968Google Scholar
  30. Larsell, O.: The comparative anatomy and histology of the cerebellum from myxinoids through birds, J. Jansen (ed.) Minneapolis: The University of Minnesota Press 1967Google Scholar
  31. Latham, A., Paul, D. H.: Spontaneous activity of cerebellar Purkinje cells and their responses to impulses in climbing fibers. J. Physiol. (Lond.)213, 135–156 (1971)Google Scholar
  32. Lázár, G.: Efferent pathways of the optic tectum in the frog. Acta biol. Acad. Sci. hung.20, 171–183 (1969)Google Scholar
  33. Leicht, R., Rowe, M. J., Schmidt, R. F.: Cutaneous convergence onto the climbing fibre input to cerebellar Purkyně cells. J. Physiol. (Lond.)228, 601–618 (1973)Google Scholar
  34. Llinás, R., Bloedel, J. R.: Climbing fibre activation of Purkinje cells in the frog cerebellum. Brain Res.3, 299–302 (1967)Google Scholar
  35. Llinás, R., Bloedel, J. R., Hillman, D. E.: Functional characterization of neuronal circuitry of frog cerebellar cortex. J. Neurophysiol.32, 847–870 (1969a)Google Scholar
  36. Llinás, R., Bloedel, J. R., Roberts, W.: Antidromic invasion of Purkinje cells in frog cerebellum. J. Neurophysiol.32, 881–891 (1969b)Google Scholar
  37. Maekawa, K., Simpson, J. I.: Climbing fiber activation of Purkinje cells in the flocculus by impulses transferred through the visual pathway. Brain Res.39, 245–251 (1972)Google Scholar
  38. Müller, H.: Das Elektroretinogramm des Frosches unter Einwirkung von Strychnin, Urethan und Santon nach Belichtung mit energiegleichem Licht verschiedener Wellenlänge. Pflügers Arch. ges. Physiol.254, 155 (1953)Google Scholar
  39. Muntz, W. R. A.: Microelectrode recordings from the diencephalon of the frog (Rana pipiens) and a blue-sensitive system. J. Neurophysiol.25, 699–711 (1962)Google Scholar
  40. Nacimiento, A. C.: Spontaneous and evoked discharges of cerebellar Purkinje cells in the frog. In: Llinás, R. (ed.), Neurobiology of cerebellar evolution and development, p. 373–389. Chicago: Am. Med. Assoc. 1969Google Scholar
  41. Nicholson, C.: Communicational aspects of neuronal circuitry in the cerebellar cortex of the alligator. Ph. D. thesis, University of Keele, England (1968)Google Scholar
  42. Oscarsson, O.: Termination and functional organization of the dorsal spino-olivo-cerebellar path. Brain Res.5, 531–534 (1967)Google Scholar
  43. Oscarsson, O.: Termination and functional organization of the ventral spino-olivo-cerebellar path. J. Physiol. (Lond.)196, 453–478 (1968)Google Scholar
  44. Oscarsson, O.: The sagittal organization of the cerebellar anterior lobe as revealed by the projection patterns of the climbing fiber system. In: Llinás, R. (ed.), Neurobiology of cerebellar evolution and development, p. 525–537. Chicago: Am. Med. Assoc. 1969Google Scholar
  45. Prosser, C. L., O'Benar, J. D., Peterson, R. H., Offutt, G. C.: Visual responses in brain of goldfish. Proc. XXV Int. Physiol. Congr., Munich, Abstracts, 461 (1971)Google Scholar
  46. Röthig, P.: Beiträge zum Studium des Zentralnervensystems der Wirbeltiere. II Über die Faserzüge im Mittelhirn, Kleinhirn und der Medulla oblongata der Urodelen und Anuren. Z. mikr.-anat. Forsch.10, 381–472 (1927)Google Scholar
  47. Romeis, B.: Mikroskopische Technik. München: R. Oldenburg 1968Google Scholar
  48. Rubinson, K.: Projections of the tectum opticum of the frog. Brain Behav. Evol.1, 529–561 (1968)Google Scholar
  49. Rushmer, D. S., Woodward, D. J.: Responses of Purkinje cells in the frog cerebellum to electrical and natural stimulation. Brain Res.33, 324–335 (1971a)Google Scholar
  50. Rushmer, D. S., Woodward, D. S.: Inhibition of Purkinje cells in the frog cerebellum. I. Evidence for a stellate cell inhibitory pathway. Brain Res.33, 83–90 (1971b)Google Scholar
  51. Sotelo, C.: Ultrastructural aspects of the cerebellar cortex of the frog. In: Llinás, R. (ed.), Neurobiology of cerebellar evolution and development, p. 327–372. Chicago: Am. Med. Assoc. 1969Google Scholar
  52. Szentágothai, J., Rajkovits, K.: Über den Ursprung der Kletterfasern des Kleinhirns, Z. Anat. Entwickl.-Gesch.121, 130–141 (1959)Google Scholar
  53. Thach, W. T.: Discharge of cerebellar neurons related to two maintained postures and to prompt movements. II. Purkinje cell output and input. J. Neurophysiol.33, 537–547 (1970)Google Scholar
  54. Woodward, D. J., Hoffer, B. J., Siggins, G. R., Oliver, A. P.: Inhibition of Purkinje cells in the frog cerebellum. II. Evidence for GABA as the inhibitory transmitter. Brain Res.33, 91–100 (1971)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • N. Dieringer
    • 1
  1. 1.Zoologisches Institut der UniversitätMünchen

Personalised recommendations