Journal of comparative physiology

, Volume 101, Issue 2, pp 89–97 | Cite as

The relation between plasma Na concentration and salt gland Na−K ATPase content in the diamondback terrapin and the yellow-bellied sea snake

  • Margaret K. Dunson
  • William A. Dunson


The Na−K ATPase activity of the diamondback terrapin (Malaclemys) lachrymal salt gland increased with a rise in Na concentration of the plasma. Considerable dehydration was necessary to obtain maximal stimulation of gland Na−K ATPase and some terrapins kept in sea water for many months may not have fully active glands. No changes occurred in lachrymal gland weight. The salt glands of salt injected or sea water acclimated terrapins (when plasma Na>200 mM), desert iguanas (Dipsosaurus) and sea snakes (Pelamis) contained comparable activities of Na−K ATPase. Sea snakes kept in fresh water for 48 days showed no decrease in salt gland Na−K ATPase activity or in gland weight, even though the plasma Na concentration diminished markedly.


Dehydration Human Physiology Fresh Water ATPase Activity Comparable Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bentley, P. J., Bretz, W. L., Schmidt-Nielsen, K.: Osmoregulation in the diamondback terrapin,Malaclemys terrapin centrata. J. exp. Biol.46, 161–167 (1967)Google Scholar
  2. Bonting, S. L.: Sodium-potassium activated adenosinetriphosphatase and cation transport. In: Membranes and ion transport (E. E. Bittar, ed.), vol. 1, p. 257–363. New York: J. Wiley & Sons 1970Google Scholar
  3. Cowan, F. B. M.: The ultrastructure of the lachrymal “salt” gland and the Harderian gland in the euryhalineMalaclemus and some closely related stenohaline turtles. Canad. J. Zool.49, 691–697 (1971)Google Scholar
  4. Cowan, F. B. M.: The homology of cranial glands in reptiles with special reference to the nomenclature of salt glands. J. Morph.141, 157–170 (1973)Google Scholar
  5. Cowan, F. B. M.: Observations on extrarenal excretion by orbital glands and osmoregulation inMalaclemys terrapin. Comp. Biochem. Physiol.48A, 489–500 (1974a)Google Scholar
  6. Cowan, F. B. M.: Observations on K+-stimulated p-nitrophenylphosphatase in the lachrymal gland ofMalaclemys terrapin, during adaptation to salt and fresh water. Comp. Biochem. Physiol.49A, 775–785 (1974b)Google Scholar
  7. Dunson, W. A.: Salt gland secretion in the pelagic sea snakePelamis. Amer. J. Physiol.215, 1512–1517 (1968)Google Scholar
  8. Dunson, W. A.: Some aspects of electrolyte and water balance in three estuarine reptiles, the diamondback terrapin, American and “salt water” crocodiles. Comp. Biochem. Physiol.32, 161–174 (1970)Google Scholar
  9. Dunson, W. A.: Salt gland secretion in a mangrove monitor lizard. Comp. Biochem. Physiol.47A, 1245–1255 (1974)Google Scholar
  10. Dunson, W. A.: Salt glands in reptiles. In: Biology of the reptilia. Physiol A., vol. 5 (C. Gans, W. R. Dawson, eds.). New York: Academic Press (in press)Google Scholar
  11. Dunson, W. A., Packer, R. K., Dunson, M. K.: Sea snakes: An unusual salt gland under the tongue. Science173, 437–441 (1971)Google Scholar
  12. Dunson, W. A., Dunson, M. K.: Interspecific differences in fluid concentration and secretion rate of sea snake salt glands. Amer. J. Physiol.227, 430–438 (1974)Google Scholar
  13. Ernst, S. A., Goertemiller, C. C. Jr., Ellis, R. A.: The effect of salt regimens on the development of (Na+−K+)-dependent ATPase activity during the growth of salt glands of ducklings. Biochim. biophys. Acta (Amst.)135, 682–692 (1967)Google Scholar
  14. Fiske, C. H., Subbarow, Y.: The colorimetric determination of phosphorus. J. biol. Chem.66, 375–400 (1925)Google Scholar
  15. Fletcher, G. L., Stainer, I. M., Holmes, W. N.: Sequential changes in the adenosine-triphosphatase activity and in the electrolyte excretory capacity of the nasal glands of the duck (Anas platyrhynchos) during the period of adaptation to hypertonic saline. J. exp. Biol.47, 375–392 (1967)Google Scholar
  16. Gilles-Baillien, M.: Hibernation and osmoregulation in the diamondback terrapinMalaclemys centrata centrata (Latreille). J. exp. Biol.59, 45–51 (1973a)Google Scholar
  17. Gilles-Baillien, M.: Isosmotic regulation in various tissues of the diamondback terrapinMalaclemys centrata centrata (Latreille). J. exp. Biol.59, 39–43 (1973b)Google Scholar
  18. Gilles-Baillien, M.: Seasonal variations and osmoregulation in the red blood cells of the diamondback terrapinMalaclemys centrata centrata (Latreille). Comp. Biochem. Physiol.46A, 505–512 (1973c)Google Scholar
  19. Hokin, L. E., Dahl, J. L., Deupree, J. D., Dixon, J. F., Hackeny, J. F., Perdue, J. F.: Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. X. Purification of the enzyme from the rectal gland ofSqualus acanthias. J. biol. Chem.248, 2593–2605 (1973)Google Scholar
  20. Holmes, W. N., Stewart, D. J.: Changes in the nucleic acid and protein composition of the nasal glands from the duck (Anas platyrhynchos) during the period of adaptation to hypertonic saline. J. exp. Biol.48, 509–519 (1968)Google Scholar
  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem.193, 265–275 (1951)Google Scholar
  22. Schmidt-Nielsen, K., Fänge, R.: Salt glands in marine reptiles. Nature (Lond.)182, 783–785 (1958)Google Scholar
  23. Shoemaker, V., Nagy, K. A., Bradshaw, S. D.: Studies on the control of electrolyte excretion by the nasal gland of the lizardDipsosaurus dorsalis. Comp. Biochem. Physiol.42A, 749–757 (1972)Google Scholar
  24. Thorson, T. B.: Body fluid partitioning in Reptilia. Copeia1968, 592–601 (1968)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Margaret K. Dunson
    • 1
  • William A. Dunson
    • 1
  1. 1.Department of BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations