Journal of comparative physiology

, Volume 85, Issue 1, pp 25–36 | Cite as

Orientation of bees by the polarized light of a limited area of the sky

  • Victor Zolotov
  • Leonid Frantsevich


  1. 1.

    The direction of dances of bees, trained for a place in the certain direction, were recorded in a horizontal hive sheltered with a white tent, where windows exposing the blue sky could be opened. The check distribution of directions indicated by dancing foragers was recorded under the completely sheltered tent.

  2. 2.

    The orientation of bees was faultless under the window exposing the area of the sky within the solid angle of 0.157 ster, i.e. occupying 2,5% of the sky hemisphere, in the belt of maximal polarization (polarization content 30–40%). The accuracy of orientation diminished with decrease in the size of the window (Table 1, Kg. 4). Increasing the polarization to 100% level by means of polaroid filter, one scarcely improves the orientation capacity of bees (Table 2, Pig. 4). The threshold area of the blue sky necessary for orientation is estimated as 0.027 to 0.039 ster.

  3. 3.

    When the sky was exposed through four small windows with total area of 0.157 ster but each one being of subthreshold size, in different arrangements (Fig. 3), the accuracy of orientation diminished immediately with increase of spacing among small windows (Table 3). The size of the zone of full summation for a system integrating the signal about polarization could not exceed considerably the size of a field sufficient for the faultless orientation.

  4. 4.

    The fields for the threshold and faultless orientation are described in terms of arrays of ommatidia. The number of ommatidia in these fields are 25–50 and 150–200 respectively.



Receptive Field Ster Small Window Density Index Maximal Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Autrum, H., Stumpf, H.: Das Bienenauge als Analysator für polarisiertes Licht. Z. Naturforsch.5b, 116–122 (1950).Google Scholar
  2. Autrum, H., Wiedemann, I.: Versuche über den Strahlengang im Insektenauge. Z. Naturforsch.17b, 480–482 (1962).Google Scholar
  3. Autrum, H., Zwehl, V. von: Die Sehzellen der Insekten als Analysatoren für polarisiertes Lieht. Z. vergl. Physiol.46, 1–7 (1962).CrossRefGoogle Scholar
  4. Autrum, H., Zwehl, V. von: Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol.48, 357–384 (1964).CrossRefGoogle Scholar
  5. Bohn, H., Täuber, U.: Beziehungen zwischen der Wirkung polarisierten Lichtes auf das Electroretinogramm und der Ultrastruktur des Auges vonGerris lacustris L. Z. vergl. Physiol.72, 32–53 (1971).CrossRefGoogle Scholar
  6. Burkhardt, D., Wendler, L.: Ein direkter Beweis für die Fähigkeit einzelner Sehzellen des Insektenauges, die Schwingungsrichtung polarisierten Lichtes zu analysieren. Z. vergl. Physiol.43, 687–692 (1960).CrossRefGoogle Scholar
  7. Fernandez-Moran, H.: Fine structure of the insect retina as revealed by electron microscopy. Nature (Lond.)177, 742–743 (1956).CrossRefGoogle Scholar
  8. Frisch, K. von: Die Sonne als Kompaß im Leben der Bienen. Experientia (Basel)6, 210–221 (1950).Google Scholar
  9. Frisch, K. von: Tanzsprache und Orientierung der Bienen. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  10. Giulio, L.: Electroretinographische Beweisführung dichroitischer Eigenschaften des Komplexauges bei Zweiflüglern. Z. vergl. Physiol.46, 491–495 (1963).CrossRefGoogle Scholar
  11. Gribakin, F. G.: Ultrastructural organization of insect photoreceptors [in Russian]. Trudy VEO53, 238–273 (1969).Google Scholar
  12. Gribakin, F. G.: The distribution of the long wave photoreceptors in the compound eye of the honeybee as revealed by selective osmic staining. Vision Res.12, 1225–1230 (1972).PubMedCrossRefGoogle Scholar
  13. Horridge, G. A.: Unit studies on the retina of the dragonflies. Z. vergl. Physiol.62, 1–37 (1969).CrossRefGoogle Scholar
  14. Kuiper, J. W.: Optics of the compound eye. Biol. receptor mechanisms. Symp. Soc. exp. Biol.16, 58–71 (1962).Google Scholar
  15. Kuwabara, M., Naka, K.: Response of a single retinula cell to polarized light. Nature (Lond.)184, 455–456 (1959).CrossRefGoogle Scholar
  16. Langer, H., Thorell, B.: Microspectrophotometry of single rhabdomeres in the insect eye. Exp. Cell Res.41 673–677 (1966).PubMedCrossRefGoogle Scholar
  17. Laughlin, S. B., Horridge, G. A.: Angular sensitivity of the retinula cells of dark-adapted worker bee. Z. vergl. Physiol.74, 329–335 (1971).CrossRefGoogle Scholar
  18. Lüdtke, H.: Beziehungen des Feinbaues im Rückenschwimmerauge zu seiner Fähigkeit, polarisiertes Licht zu analysieren. Z. vergl. Physiol.40, 329–344 (1957).CrossRefGoogle Scholar
  19. Moody, M. F., Parriss, J. R.: The discrimination of polarized light by Octopus. Z. vergl. Physiol.44, 268–291 (1961).CrossRefGoogle Scholar
  20. Scholes, J.: The electrical responses of the retinal receptors and the lamina in the visual system of the fly,Musca. Kybernetik6, 149–162 (1969).PubMedCrossRefGoogle Scholar
  21. Scholes, J., Reichardt, W.: The quantal component of optomotor stimuli and the electrical responses of receptors in the compound eye of the fly,Musca. Kybernetik6, 74–79 (1969).PubMedCrossRefGoogle Scholar
  22. Seitz, G.: Polarisationsoptische Untersuchungen am Auge vonCalliphora erythrocephala Meig. Z. Zellforsoh.93, 525–529 (1969).CrossRefGoogle Scholar
  23. Seletskaya, L. I.: Contribution to the perception of polarized light by the compound eye of the bee [in Russian]. BiophysicaI, 155–157 (1956).Google Scholar
  24. Shaw, S. R.: Polarized light responses from crab retinula cells. Nature (Lond.)211, 92–93 (1966).CrossRefGoogle Scholar
  25. Shaw, S. E.: Organization of the locust retina. In: Invertebrate receptors. New York: Acad. Press 1968.Google Scholar
  26. Shaw, S. R.: Optics of arthropod compound eye. Science165, 88–90 (1969).Google Scholar
  27. Snyder, A. W., Pask, C.: Detection of polarization and direction by the bee rhabdom. J. comp. Physiol.78, 346–355 (1972).CrossRefGoogle Scholar
  28. Stockhammer, K.: Zur Wahrnehmung der Schwingungsrichtung linear polarisierten Lichtes bei Insekten. Z. vergl. Physiol.38, 30–83 (1956).CrossRefGoogle Scholar
  29. Varela, V. G., Wiitanen, W.: The optics of the compound eye of the honeybee,Apis mellifera. J. gen. Physiol.55, 336–358 (1970).PubMedCrossRefGoogle Scholar
  30. Verkhovskaya, I. N.: The influence of polarized light upon the phototaxis of certain organisms [in Russian]. Bull. MOIP49, 101–113 (1940).Google Scholar
  31. Waterman, T. H.: A light polarization analyzer in the compound eye ofLimulus. Science111, 252–254 (1950).Google Scholar
  32. Waterman, T.-H., Fernandez, H. R.: E-veotor and wave length discrimination by retinular cells of the crayfish,Procambarus. Z. vergl. Physiol.68, 154–174 (1970).CrossRefGoogle Scholar
  33. Waterman, T. H., Fernandez, H. R., Goldsmith, T. H.: Dichroism of photosenitive pigment in rhabdoms of the crayfish,Orconectes. J. gen. Physiol.54, 415–432 (1969).PubMedCrossRefGoogle Scholar
  34. Waterman, T. H., Horch, K. W.: Mechanism of polarized light perception. Science154, 467–475 (1966).PubMedGoogle Scholar
  35. Waterman, T. H., Wiersma, C. A. G., Bush, M. B. H.: Afferent visual responses in the optic nerve of the crab,Podophtalmus. J. cell. comp. Physiol.68, 135–156 (1964).CrossRefGoogle Scholar
  36. Zolotov, V. V.: Orientation of bees by the polarized light [in Russian]. Pchelov.8, 16–18 (1972).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Victor Zolotov
    • 1
  • Leonid Frantsevich
    • 1
  1. 1.Laboratory of Insect Physiology, Institute of ZoologyAcademy of Sciences of Ukrainian SSRKiev

Personalised recommendations