Advertisement

Applied Physics B

, Volume 35, Issue 4, pp 217–225 | Cite as

Using the seventh-order numerical method to solve first-order nonlinear coupled-wave equations for degenerate two-wave and four-wave mixing

  • Y. H. Ja
Contributed Papers

Abstract

Using a new seventh-order numerical method [theO(h7) method] for solving two-point boundary value problems, numerical solutions of the first-order nonlinear coupledwave equations for degenerate two-wave and four-wave mixing in a reflection geometry have been obtained. A computer program employing the Gauss-Jordan elimination technique has also been adopted to effectively solve the resultant large, sparse and unsymmetric matrix, obtained from theO(h7) method and the Newton-Raphson iteration method. Numerical results from the computer calculations are presented graphically. A comparison between thisO(h7) method and the shooting method, mainly from the viewpoint of computational efficiency, is also made.

PACS

42.65 78.20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Feinberg: InOptical Phase Conjugation, ed. by R.A. Fisher (Academic Press, New York 1983) pp. 417–443Google Scholar
  2. 2.
    E.G. Ramberg: RCA Rev.33, 5–53 (1972)Google Scholar
  3. 3.
    H. Kogelnik: Bell Syst. Tech. J.48, 2909–2947 (1969)Google Scholar
  4. 4.
    A. Yariv, R.A. Fisher: InOptical Phase Conjugation, ed. by R.A. Fisher (Academic Press, New York 1983) pp. 9–11Google Scholar
  5. 5.
    J.P. Huignard, J.P. Herriaue, G. Rivet, P. Gunter: Opt. Lett.5, 102–105 (1980)Google Scholar
  6. 6.
    Y.H. Ja: Opt. Commun.41, 159–163 (1982)Google Scholar
  7. 7.
    N.V. Kukhtarev, S.G. Odulov: Proc. Opt. Photonics213-SPIE, 2–10 (1979)Google Scholar
  8. 8.
    M. Cronin-Golomb, J.O. White, B. Fischer, A. Yariv: Opt. Lett.7, 313–315 (1982)Google Scholar
  9. 9.
    Y.H. Ja: Opt. Quantum Electron.15, 529–538 (1983)Google Scholar
  10. 10.
    Y.H. Ja: Opt. Quantum Electron.15, 539–546 (1983)Google Scholar
  11. 11.
    Y. H. Ja: Appl. Phys. B33, 161–165 (1984)Google Scholar
  12. 12.
    R.P. Tewarson Intern. J. Num. Methods Eng.18, 1313–1319 (1982)Google Scholar
  13. 13.
    J. Walsh: InThe State of the Art in Numerical Analysis, ed. by D. Jacobs (Academic Press, London (1975) pp. 501–533Google Scholar
  14. 14.
    J.E. Key: Intern. J. Num. Methods Eng.6, 497–509 (1973)Google Scholar
  15. 15.
    R.P. Tewarson BIT20, 223–232 (1980)Google Scholar
  16. 16.
    Y.H. Ja: Opt. Quantum Electron.14, 547–556 (1982)Google Scholar
  17. 17.
    J.P. Huignard, A. Marrakchi: Opt. Commun.38, 249–254 (1981)Google Scholar
  18. 18.
    A.A. Ballman: J. Cryst. Growth1, 37–40 (1967)Google Scholar
  19. 19.
    G.G. Douglas, R.N. Zitter: J. Appl. Phys.39, 2133–2135 (1968)Google Scholar
  20. 20.
    V.L. Vinetskii, N.V. Kukhtarev: Soc. J. Quantum Electron.8, 231–235 (1978)Google Scholar
  21. 21.
    Y.H. Ja: Opt. Quantum Electron.16, (1984, in press)Google Scholar
  22. 22.
    R. Lytel: J. Opt. Soc. Am. B1, 91–94 (1984)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Y. H. Ja
    • 1
  1. 1.Research LaboratoriesTelecom AustraliaClayton NorthAustralia

Personalised recommendations