Journal of comparative physiology

, Volume 83, Issue 3, pp 239–262 | Cite as

The anatomy of the compound eye ofPeriplaneta americana L.

2. Fine structure
  • R. Butler


  1. 1.

    The fine structure of the retina was studied using light and electron microscopy.

  2. 2.

    The eye is of the typical fused-rhabdomere, eucone, apposition type, with no unusual features or specializations.

  3. 3.

    Each ommatidium consists of a distal dioptric apparatus with cornea and four cells forming the crystalline cone. Proximal to this is a retina composed of eight retinula cells. Each ommatidium is surrounded distally by two primary pigment cells and proximally by several accessory pigment cells.

  4. 4.

    All retinula cells are similar and contribute to the rhabdom.

  5. 5.

    In the light-adapted state, retinula cell screening pigment particles congregate around the rhabdom, contrasting with the dark-adapted state where a palisade separates the screening pigment from the rhabdom.



Microscopy Electron Microscopy Retina Fine Structure Pigment Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bullock, T. H., Horridge, G. A.: Structure and Function in the Nervous Systems of Invertebrates, p. 1064–1097. San Francisco: W. H. Freeman 1965.Google Scholar
  2. Butler, R.: The identification and mapping of spectral cell types in the retina ofPeriplaneta americana. Z. vergl. Physiol.72, 67–80 (1971).Google Scholar
  3. Butler, R.: The anatomy of the compound eye ofPeriplaneta americana L. 1. General features. J. comp. Physiol.83, 223–238 (1973).Google Scholar
  4. Eguchi, E., Waterman, T. H.: Changes in retinal fine structure induced in the crabLibinia by light and dark adaptation. Z. Zellforsch.79, 209–229 (1967).Google Scholar
  5. Fernández-Morán, H.: Fine structure of the insect retinula as revealed by electron microscopy. Nature (Lond.)177, 742–743 (1956).Google Scholar
  6. Fernández-Morán, H.: Fine structure of the light receptors in the compound eyes of insects. Expl. Cell Res., Suppl.5, 586–644 (1958).Google Scholar
  7. Goldsmith, T. H., Philpott, D. E.: The microstructure of the compound eye of insects. J. biophys. biochem. Cytol.3, 429–440 (1957).Google Scholar
  8. Grenacher, H.: Untersuchungen über die Sehorgane der Arthropoden, insbesondere der Spinnen, Insecten und Crustaceen. 188 pp. Göttingen: Vandenhoek and Ruprecht 1879.Google Scholar
  9. Hesse, R.: Untersuchungen über die Organe der Lichtempfindung bei niederen Thieren. VII. Von den Arthropoden-Augen. Z. wiss. Zool.70, 347–473 (1901).Google Scholar
  10. Horridge, G. A., Barnard, P. B. T.: Movement of palisade in locust retinula cells when illuminated. Quart. J. micr. Sci.106, 131–135 (1965).Google Scholar
  11. Horridge, G. A., Giddings, C.: The ommatidium of the termiteMastotermes darwiniensis. Tissue and Cell3, 463–476 (1971).Google Scholar
  12. Jörschke, H.: Die Facettenaugen der Orthopteren und Termiten. Z. wiss. Zool.111, 153–280 (1914).Google Scholar
  13. Langer, H.: Über die Pigmentgranula im Facettenauge vonCalliphora erythrocephala. Z. vergl. Physiol.55, 354–377 (1967).Google Scholar
  14. Langer, H., Hoffmann, C.: Elektro- und Stoffwechsel-physiologische Untersuchungen über den Einfluss von Ommochromen und Pteridinen auf die Funktion des Facettenauges vonCalliphora erythrocephala. J. Insect Physiol.12, 357–387 (1966).Google Scholar
  15. Miller, W. H.: Morphology of the ommatidia of the compound eye ofLimulus. J. biophys. biochem. Cytol.3, 421–428 (1952).Google Scholar
  16. Millonig, G.: Advantages of a phosphate buffer for OsO4 solutions in fixation. Proc. Electron Micr. Soc. Amer. J. appl. Phys.32, 1637 (1961).Google Scholar
  17. Mote, M. I., Goldsmith, T. H.: Compound eyes: localization of two color receptors in the same ommatidium. Science171, 1254–1255 (1971).Google Scholar
  18. Neville, A. C.: Cuticle ultrastructure in relation to the whole insect. Symp. roy. ent. Soc.5, 17–39 (1970).Google Scholar
  19. Neville, A. C., Luke, B. M.: A biological system producing a selfassembling cholesterin protein liquid crystal. J. Cell Sci.8, 93–109 (1971).Google Scholar
  20. Nowikoff, M.: Über den Bau der Komplexaugen vonPeriplaneta (Stylopyga) orientalis L. Jena. Z. Naturw.67, 58–69 (1932).Google Scholar
  21. Patat, U.: Über das Pterinmuster der Facettenaugen vonCalliphora erythrocephala. Ein Beitrag zur Funktion und Stabilität der Pterine. Z. vergl. Physiol.51, 103–134 (1965).Google Scholar
  22. Perrelet, A.: The fine structure of the retina of the honey bee drone. An electron microscopical study. Z. Zellforsch.108, 530–562 (1970).Google Scholar
  23. Reynolds, E. S.: The use of lead citrate at high pH as electron opaque stain in electron microscopy. J. Cell Biol.17, 208–212 (1963).Google Scholar
  24. Trujillo-Cenóz, O., Melamed, J.: Spatial distribution of photoreceptor cells in the ommatidia ofPeriplaneta americana. J. Ultrastruct. Res.34, 397–400 (1971).Google Scholar
  25. Trump, B. F., Smuckler, E. A., Benditt, E. P.: A method for staining epoxy sections for light microscopy. J. Ultrastruct. Res.5, 343–348 (1961).Google Scholar
  26. Varela, F. G., Porter, K. R.: Fine structure of the visual system of the honeybee (Apis mellifera). I. The retina. J. Ultrastruct. Res.29, 236–259 (1946).Google Scholar
  27. Wolken, J. J., Gupta, P. D.: Photoreceptor structures. The retinal cells of the cockroach eye. IV.Periplaneta americana andBlaberus giganteus. J. biophys. biochem. Cytol.9, 720–724 (1961).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • R. Butler
    • 1
    • 2
  1. 1.Department of Neurobiology, Research School of Biological SciencesAustralian National UniversityCanberraAustralia
  2. 2.University Laboratory of PhysiologyOxfordEngland

Personalised recommendations