Journal of comparative physiology

, Volume 81, Issue 3, pp 259–276 | Cite as

Intracellular and extracellular motor neuron activity underlying rhythmic respiration inLimulus

  • Gordon A. Wyse
Article

Summary

  1. 1.

    Intracellular activity was recorded from respiratory motor neurons and other neurons in the isolated abdominal CNS ofLimulus.

     
  2. 2.

    Patterned motor output underlying the gill ventilatory rhythm occurred in isolated preparations. Stimulation of tracts in interganglionic connectives and of various roots and connectivies elicited the rhythmic output. Rhythmic respiratory activity could also occur in the absence of any stimulation.

     
  3. 3.

    During cyclic activity the membrane potentials of motor and other neurons oscillated along with the rhythmic motor output (Fig. 3). In some cells, membrane repolarization could be reversed by hyperpolarizing current (Figs. 4, 6), indicating that bursts were terminated by synaptic inhibition.

     
  4. 4.

    Changing impulse frequencies of neurons by current injection or by antidromic stimulation had little effect on activity of other motor neurons (Fig. 4, 6, 7). There was no evidence to implicate connections between motor neurons in the generation of the rhythm, but the existence of such connections cannot be ruled out.

     

Keywords

Motor Neuron Current Injection Respiratory Activity Motor Output Cyclic Activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentley, D. R.: Intracellular activity in cricket neurons during the generation of behaviour patterns. J. Insect Physiol.15, 677–699 (1969).Google Scholar
  2. Davis, W. J.: Reflex organization in the swimmeret system of the lobster. I. Intrasegmental reflexes. J. exp. Biol.51, 547–563 (1969).Google Scholar
  3. Davis, W. J., Kennedy, D.: Command interneurons controlling swimmeret movements in the lobster. I. Types of effects on motoneurons. J. Neurophysiol.35, 1–12 (1972).Google Scholar
  4. Evoy, W. H., Cohen, M. J.: Central and peripheral control of anthropod movements. In: Advances in comparative physiology and biochemistry. (O. Loewenstein, ed.), vol. 4, p. 225–266. New York: Academic Press 1971.Google Scholar
  5. Evoy, W. H., Kennedy, D., Wilson, D. M.: Discharge patterns of neurones supplying tonic abdominal flexor muscles in the crayfish. J. exp. Biol.46, 393–411 (1967).Google Scholar
  6. Fourtner, C. R., Drewes, C. D., Pax, R. A.: Rhythmic motor outputs co-ordinating the respiratory movement of the gill-plates ofLimulus polyphemus. Comp. Biochem. Physiol.38A, 751–762 (1971).Google Scholar
  7. Gillary, H. L., Kennedy, D.: Pattern generation in a crustacean motoneuron. J. Neurophysiol.32, 595–606 (1969).Google Scholar
  8. Hagiwara, S.: Nervous activities of the heart in Crustacea. Ergebn. Biol.24, 287–311 (1961).Google Scholar
  9. Hyde, I. H.: The nervous mechanism of the respiratory movements inLimulus polyphemus. J. Morph.9, 431–448 (1894).Google Scholar
  10. Hyde, I. H.: A reflex respiratory centre. Amer. J. Physiol.16, 368–377 (1906).Google Scholar
  11. Ikeda, K., Wiersma, C. A. G.: Autogenic rhythmicity in the abdominal ganglia of the crayfish: the control of swimmeret movements. Comp. Biochem. Physiol.12, 107–115 (1964).Google Scholar
  12. Kendig, J. J.: Motor neurone coupling in locust flight. J. exp. Biol.48, 389–404 (1968).Google Scholar
  13. Kennedy, D.: The control of output by central neurons. In: The interneuron, UCLA Forum Med. Sci. No.11 (M. A. B. Brazier, ed.), p. 21–36. Los Angeles: Univ. Calif. Press 1969.Google Scholar
  14. Kennedy, D., Evoy, W. H., Fields, H. L.: The unit basis of some crustacean reflexes. Symp. Soc. exp. Biol.20, 75–109 (1966).Google Scholar
  15. Kupfermann, I., Kandel, E. R.: Electrophysiological properties and functional inter-connections of two symmetrical neurosecretory clusters (bag cells) in abdominal ganglia ofAplysia. J. Neurophysiol.33, 865–876 (1970).Google Scholar
  16. Larimer, J. L., Kennedy, D.: The central nervous control of complex movements in the uropods of crayfish. J. exp. Biol.51, 135–150 (1969).Google Scholar
  17. Maynard, D. M.: Integration in crustacean ganglia. Symp. Soc. exp. Biol.20, 111–149 (1966).Google Scholar
  18. Maynard, D. M.: Discussion. In: The interneuron, UCLA Forum Med. Sci. No. 11 (M. A. B. Brazier, ed.), p. 56–68. Los Angeles: Univ. Calif. Press 1969.Google Scholar
  19. Mendelson, M.: Oscillator neurons in crustacean ganglia. Science171, 1070–1073 (1971).Google Scholar
  20. Mulloney, B.: Organization of flight motoneurons of Diptera. J. Neurophysiol.33, 86–95 (1970).Google Scholar
  21. Mulloney, B., Selverston, A.: Antidromic action potentials fail to demonstrate known interactions between neurons. Science177, 69–72 (1972).Google Scholar
  22. Sandeman, D. C.: The excitation and electrical coupling of four identified motoneurons in the brain of the Australian mud crab,Scylla serrata. Z. vergl. Physiol.72, 111–130 (1971).Google Scholar
  23. Smith, D. O.: Central nervous control of presynaptic inhibition in the crayfish claw. J. Neurophysiol.35, 333–343 (1972).Google Scholar
  24. Waterman, T. H., Travis, D. F.: Respiratory reflexes and the flabellum ofLimulus. J. cell. comp. Physiol.41, 261–289 (1953).Google Scholar
  25. Wiersma, C. A. G., Ikeda, K.: Interneurons commanding swimmeret movements in the crayfish,Procambarus clarki (Girard). Comp. Biochem. Physiol.12, 509–525 (1964).Google Scholar
  26. Wilson, D. M.: Central nervous mechanisms for the generation of rhythmic behaviour in arthropods. Symp. Soc. exp. Biol.20, 199–228 (1966).Google Scholar
  27. Wilson, D. M., Gettrup, E.: A stretch reflex controlling wingbeat frequency in grasshoppers. J. exp. Biol.40, 171–185 (1963).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Gordon A. Wyse
    • 1
    • 2
  1. 1.Department of ZoologyUniversity of MassachusettsAmherst
  2. 2.Marine Biological LaboratoryWoods Hole

Personalised recommendations