Journal of comparative physiology

, Volume 79, Issue 1, pp 15–27 | Cite as

Microampullary organs and a submandibular sense organ in the fresh water ray,Potamotrygon

  • T. Szabo
  • A. J. Kalmijn
  • P. S. Enger
  • T. H. Bullock
Article

Summary

  1. 1.

    Potamotrygon lacks ampullae of Lorenzini (defined by their long canals), otherwise general for elasmobranchs. There are present however microscopic ampullary organs with extremely short canals. A brief histologic description is provided, together with counts of their abundance in various parts of the body. They are chiefly concentrated ventrally in the head region.

     
  2. 2.

    The skin has a relatively high resistance compared to marine rays. This is measured in the physiologically significant way, by measuring the potential distribution in and around a living ray placed in a homogenous electric field.

     
  3. 3.

    The microscopical size of the ampullary organs and the high skin resistance are believed to be a specialization maintaining the electroreceptive function in the low conductivity, fresh water medium.

     
  4. 4.

    These rays are shown to be responsive to d.c. and low-frequency a.c. electric fields. They give specific movements seemingly related to feeding. They seem to be less sensitive than marine sharks and rays. The threshold stimulus is probably less than 120 μV/cm (corresponding to 0.03 μA/cm2 with water resistivity of 4 kOhm · cm).

     
  5. 5.

    Potamotrygon circularis appears to lack Savi's vesicles. However, an organ which may be equivalent is a tubular, subcutaneous, receptor in the Submandibular region. It does not open to the outside or connect to the skin or to the skeleton. Its spontaneous background nerve impulses and the increases in firing with mechanical stimuli are described.

     

Keywords

Mechanical Stimulus Sense Organ Head Region Nerve Impulse Specific Movement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barets, A., Szabo, T.: Appareil synaptic des cellules sensorielles de l'ampoule de Lorenzini chez la Torpille (Torpedo marmorata). J. Microscopie (Paris)48, 536–547 (1962).Google Scholar
  2. Bennett, M. V. L.: Comparative physiology: electric organs. Ann. Rev. Physiol.32, 471–528 (1970).Google Scholar
  3. Bennet, M. V.L.: Electrolocation in fish. Ann. N.Y. Acad. Sci.188, 242–269 (1971).Google Scholar
  4. Boll, F.: Die Savi'schen Bläschen von Torpedo. Arch. Anat. Physiol.17, 456–468 (1875).Google Scholar
  5. Budker, P.: Les organes sensoriels cutanés des Selaciens. In: Traité de Zoologie, P.P. Grassé, ed.13, 1033–1062 (1958).Google Scholar
  6. Bullock, T. H., Hamstra, R. H., Jr., Scheich, H.: The jamming avoidance response of high frequency electric fish. J. comp. Physiol.77, 1–48 (1972).Google Scholar
  7. Derbin, C., Szabo, T.: Ultrastructure de l'épithélium sensoriel de la vésicule de Savi chezTorpedo marmorata. J. Physiol. (Paris)58, 508 (1966).Google Scholar
  8. Dijkgraaf, S.: Electroreception in the catfish,Amiurug nebulosus. Experientia (Basel)24, 187–188 (1968).Google Scholar
  9. Dijkgraaf, S., Kalmijn, A. J.: Untersuchungen über die Funktion der Lorenzinischen Ampullen an Haifischen. Z. vergl. Physiol.47, 438–456 (1963).Google Scholar
  10. Dotterweich, H.: Bau und Funktion der Lorenzinischen Ampullen. Zool. Jb.50, 347–418 (1932).Google Scholar
  11. Fessard, A., Szabo, T.: Sur l'organisation fonctionnelle de la vésicule de Savi. J. Physiol. (Paris)57, 706–707 (1965).Google Scholar
  12. Garman, S.: On the lateral canal system of the Selachia and Holocephala. Bull. Mus. Comp. Zool. (Harvard)17, 57–119 (1888).Google Scholar
  13. Herrick, J.: The cranial nerves and cutaneous sense organs of the North American siluroid fishes. J. comp. Neurol.11, 177–249 (1901).Google Scholar
  14. Kalmijn, A. J.: Electro-perception in sharks and rays. Nature (Lond.)212, 1232–1233 (1966).Google Scholar
  15. Kalmijn, A. J.: The electric sense of sharks and rays. J. exp. Biol.55, 371–383 (1971).Google Scholar
  16. Murray, R. W.: The response of the ampullae of Lorenzini of elasmobranchs to mechanical stimulation. J. exp. Biol.37, 417–424 (1960).Google Scholar
  17. Retzius, G.: Zur Kenntnis der Lorenzini'schen Ampullen der Selachier. Biol. Untersuch. (N.F.)8, 75–82 (1898).Google Scholar
  18. Roth, A.: Electroreception in the catfish,Amiurus nebulosus. Z. vergl. Physiol.61, 196–202 (1968).Google Scholar
  19. Roth, A.: Elektrische Sinnesorgane beim ZwergwelsIctalurus nebulosus (Amiurus nebulosus). Z. vergl. Physiol.65, 368–388 (1969).Google Scholar
  20. Szabo, T.: Quelques précisions sur la morphologie de l'appareil sensoriel de Savi dansTorpedo marmorata. Z. Zellforsch.48, 536–537 (1958).Google Scholar
  21. Szabo, T.: Sense organs of the lateral line system in some electric fish of Gymnotidae, Mormyridae and Gymnarchidae. J. Morph.117, 229–250 (1965).Google Scholar
  22. Szabo, T.: Analyse morphologique et fonctionnelle de l'épithélium sensoriel d'un mécanorécepteur. Actualites Neurol.8, 131–147 (1968).Google Scholar
  23. Szamier, B., Bennett, M.V.L.: Fine structure and physiological properties of ampullae of Lorenzini in the fresh water ray (personal communication) 1971.Google Scholar
  24. Thorson, T. B., Cowan, C. M., Watson, D. E.:Potamotrygon spp.: Elasmobranches with low urea content. Science158, 375–377 (1967).Google Scholar
  25. Waltman, B.: Electrical properties and fine structure of the ampullary canals of Lorenzini. Acta. physiol. scand.66, Suppl. 264, 1–60 (1966).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • T. Szabo
    • 1
    • 2
  • A. J. Kalmijn
    • 1
    • 2
  • P. S. Enger
    • 1
    • 2
    • 3
  • T. H. Bullock
    • 1
    • 2
  1. 1.Laboratoire de Neurophysiologie Sensorielle ComparéeCentre d'Etude de Physiologie NerveuseC.N.R.S.France
  2. 2.Department of Neurosciences and Soripps Institution of Oceanography Neurobiology UnitUniversity of CaliforniaSan Diego
  3. 3.Institute of ZoophysiologyUniversity of OsloOsloNorway

Personalised recommendations