Journal of Low Temperature Physics

, Volume 93, Issue 3–4, pp 337–342 | Cite as

Optimization of Si-implanted thermistors for high resolution calorimeters to be used in a neutrino mass experiment

  • A. Alessandrello
  • C. Brofferio
  • D. V. Camin
  • C. Cattadori
  • O. Cremonesi
  • E. Fiorini
  • E. Garcia
  • A. Giuliani
  • M. Pavan
  • G. Pessina
  • E. Previtali
  • L. Zanotti
Thermistors

Abstract

A procedure of optimization of Si-implanted thermistors was started, with the final aim to develop bolometers with a resolution of a few eV in the keV range. The initial approach was to assume that a thermal decoupling between phonons and hopping electrons establishes inside the thermistors, with consequent reduction of the sensitivity and incomplete transfer of the particle generated phonons to the conduction electrons. This assumption however failed in explaining the collected experimental data, which can be described much more satisfactorily introducing an electric field dependance of the thermistor resistance. This alternative interpretation modifies the parameter choice for an optimum device

Keywords

High Resolution Calorimeter Magnetic Material Thermistor Resistance Conduction Electron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Juda, R. Kelley, D. McCammon, H. Moseley, A. Szymkowiak and J. Zhang, High Resolution X-Ray Spectroscopy with Cryogenic Thermal Detectors, presented at IV Workshop on Low Temperature Detectors, Oxford, Great Britain, Sep 3–7, 1991Google Scholar
  2. 2.
    A. Alessandrello, C. Brofferio, D.V. Camin, O. Cremonesi, E. Fiorini, A. Giuliani, G. Pessina and E. Previtali, in Low Temperature Detectors for Neutrinos and Dark Matter III, Editions Frontieres, Vol.C26, p. 243, 1990Google Scholar
  3. 3.
    D. McCammon, M. Juda, J. Zhang, S.S. Holt, R.L. Kelley, S.H. Moseley and A.E. Szymkowiak, Japanese J. Appl. Phys.,26, suppl. 26–3 (1987)Google Scholar
  4. 4.
    N. Wang, F.C. Wellstood, B. Sadoulet, E.E. Haller and J. Beeman, Phys. Rev. B41, 3761 (1990)Google Scholar
  5. 5.
    T.F. Rosenbaum, K. Andres and G.A. Thomas, Solid State Comm.,35, 663 (1980)Google Scholar
  6. 6.
    W.A. Little, Can. J. Phys.37, 334 (1959)Google Scholar
  7. 7.
    B.I. Shklovskii, Sov. Phys. Semicond.10, 885 (1976)Google Scholar
  8. 8.
    H. Moseley, J.C. Mather and D. McCammon, J. Appl. Phys.56, 1257 (1984)Google Scholar
  9. 9.
    D. McCammon, B. Edwards, M. Juda, P. Plucinsky, J. Zhang, R. Kelley, S. Holt, G. Madejski, S. Moseley and A. Szymkowiak, in Low Temperature Detectors for Neutrinos and Dark Matter III, Editions Frontieres, vol.C26, p. 213, 1990Google Scholar
  10. 10.
    S.M. Grannan, A.E. Lange, E.E. Haller and J.W. Beeman, Phys. Rev. B,45, 4516 (1992)Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. Alessandrello
    • 1
  • C. Brofferio
    • 1
  • D. V. Camin
    • 1
  • C. Cattadori
    • 1
  • O. Cremonesi
    • 1
  • E. Fiorini
    • 1
  • E. Garcia
    • 1
  • A. Giuliani
    • 1
  • M. Pavan
    • 1
  • G. Pessina
    • 1
  • E. Previtali
    • 1
  • L. Zanotti
    • 1
  1. 1.Department of PhysicsUniversity of Milano, and INFNMilanoItaly

Personalised recommendations