Skip to main content
Log in

Comparative studies of the effects of acridines and other petite inducing drugs on the mitochondrial genome ofSaccharomyces cerevisiae

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The effects of the acridines euflavine and proflavine on mitochondrial DNA (mtDNA) replication and mutation inSaccharomyces cerevisiae have been compared. In contrast to previous results we found that under our conditions proflavine can indeed induce high levels (>80%) of petite mutants, although six times less efficiently than euflavine. The parameters measured for mutagenesis of the mitochondrial genome and inhibition of mtDNA replication in whole cells suggest that the modes of action of euflavine and proflavine are very similar. After extended (18h) treatment of growing cells with each drug the percentage loss of mtDNA or genetic loci was almost coincidental with the extent of petite induction.

It was found that proflavine is equally as effective as euflavine in inhibiting mtDNA replication in isolated mitochondria in contrast to the differential between the drugs observed in vivo. However, proflavine and euflavine inhibit cellular growth at almost the same concentrations. It is therefore proposed that there is some intracellular permeability barrier which impedes proflavine access to the mitochondrial DNA replicating system.

The petites induced by euflavine (and proflavine) are characterized by there being a preferential induction ofrho 0 petites lacking mtDNA as opposed torho - petites retaining mtDNA. This is in contrast to the relative proportions of such petites induced by ethidium bromide or berenil. A scheme for the production of petites by euflavine is presented, in which euflavine inhibits the replication of mtDNA, but does not cause direct fragmentation of mtDNA (unlike ethidium bromide and berenil). The proposed scheme explains the production of the high frequency ofrho o cells, as well as therho - cells induced by euflavine. The scheme also accounts for previous observations that euflavine only mutants growing cultures, and that the buds, but not mother cells, become petite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert, A., Rubbo, S.D., Goldacre, R.J., Davey, M.E., Stone, J.D.: The influence of chemical constitution on antibacterial activity. II. A general survey of the acridine series. Brit. J. exp. Path.26, 160–192 (1945)

    Google Scholar 

  • Avers, C.J., Rancourt, M.W., Lin, F.H.: Intracellular mitochondrial diversity in various strains ofSaccharomyces cerevisiae. Proc. nat. Acad. Sci. (Wash.)54, 527–534 (1965)

    Google Scholar 

  • Bastos, R.N., Mahler, H.R.: Molecular mechanisms of mitochondrial genetic activity. Effects of ethidium bromide on the deoxyribonucleic acid and energetics of isolated mitochondria. J. biol. Chem.249, 6617–6627 (1974)

    Google Scholar 

  • Bernardi, G., Prunell, A., Fonty, G., Kopecka, H., Strauss, F.: The mitochondrial genome of yeast: organisation, evolution and the petite mutation. In: The genetic function of mitochondrial DNA (Saccone, C. and Kroon, A.M., eds.), pp. 185–198. Amsterdam: North Holland Publishing Co. 1976

    Google Scholar 

  • Clark-Walker, G.D., Miklos, G.L.G.: Mitochondrial genetics, circular DNA and the mechanism of the petite mutation. Genet. Res. (Camb.)24, 43–57 (1974)

    Google Scholar 

  • Cobon, G.S., Crowfoot, P.D., Linnane, A.W.: Biogenesis of mitochondria. 35. Phospholipid synthesis by yeast mitochondrial and microsomal fractions. Biochem. J.194, 265–275 (1974)

    Google Scholar 

  • Ephrussi, B.: Nucleocytoplasmic relations in micro-organisms. Oxford: Clarendon Press 1953

    Google Scholar 

  • Ephrussi, B., Hottinguer, H.: Direct demonstration of the mutagenic activity of euflavine on baker's yeast. Nature (Lond.)166, 956–958 (1950)

    Google Scholar 

  • Gillham, N. W.: Genetic analysis of the chloroplast and mitochondrial genomes. Ann. Rev. Genet.8, 347–391 (1974)

    Google Scholar 

  • Goldring, E.S., Grossman, L.I., Krupnick, D., Cryer, D.R., Marmur, J.: The petite mutation in yeast. I. The loss of mitochondrial DNA during petite induction with ethidium bromide. J. molec. Biol.52, 323–335 (1970)

    Google Scholar 

  • Hall, R.M., Mattick, J.S., Marzuki, S., Linnane, A.W.: Evidence for a functional association of DNA synthesis with the membrane in mitochondria ofSaccharomyces cerevisiae. Molec. Biol. Reports2, 101–106 (1975)

    Google Scholar 

  • Hall, R.M., Nagley, P., Linnane, A.W.: Biogenesis of mitochondria. 42. Genetic analysis of the control of mitochondrial DNA levels inSaccharomyces cerevisiae. Molec. gen. Genet.145, 169–175 (1976)

    Google Scholar 

  • Kroon, A. M., de Vries, H.: Mitochondriogenesis in animal cells: studies with different inhibitors. In: Autonomy and biogenesis of mitochondria and chloroplasts (Boardman, N. K., Linnane, A. W. and Smillie, R. M., eds.), pp. 318–327. Amsterdam: North Holland Publishing Co. 1971

    Google Scholar 

  • Lerman, L.S.: The structure of the DNA-acridine complex. Proc. nat. Acad. Sci. (Wash.)49, 94–102 (1963)

    Google Scholar 

  • Linnane, A.W., Haslam, J.M., Lukins, H.B., Nagley, P.: The biogenesis of mitochondria in microorganisms. Ann. Rev. Microbiol.26, 163–198 (1972)

    Google Scholar 

  • Mahler, H.R.: Genetic autonomy of mitochondrial DNA. In: Molecular cytogenetics (Hamkalo, B. and Papaconstantinou, J., eds.), pp. 181–208. New York: Plenum Press 1973a

    Google Scholar 

  • Mahler, H.R.: Structural requirements for mitochondrial mutagenesis. J. supramol. Struct.1, 449–460 (1973b)

    Google Scholar 

  • Mahler, H.R., Bastos, R.N.: Coupling between mitochondrial mutation and energy transduction. Proc. nat. Acad. Sci. (Wash.)71, 2241–2245 (1974)

    Google Scholar 

  • Mahler, H.R., Perlman, P.S.: Induction of respiratory deficient mutants inSaccharomyces cerevisiae by berenil. I. Berenil, a novel, non-intercalating mutagen. Molec. gen. Genet.121, 285–294 (1973)

    Google Scholar 

  • Marcovich, H.: Action de l'acriflavine sur les levures. VIII. Determination du component actif et étude de l'euflavine. Ann. Inst. Pasteur (Paris)81, 452–468 (1951)

    Google Scholar 

  • Marcovich, H.: Rapports entre la structure des acridines et leur activité en tant qu'agents inducteurs de mutants respiratoires chez la levure. Ann. Inst. Pasteur (Paris)85, 199–216 (1953a)

    Google Scholar 

  • Marcovich, H.: Influence de pH sur l'action toxique et mutagene de l'euflavine sur les levures. Ann. Inst. Pasteur (Paris)85, 443–450 (1953b)

    Google Scholar 

  • Mattick, J.S., Hall, R.M.: Replicative DNA synthesis in isolated mitochondria ofSaccharomyces cerevisiae. J. Bact. (in press, 1977)

  • Michaelis, G., Douglass, S., Tsai, M., Criddle, R.S.: Mitochondrial DNA and suppressiveness in petite mutants inSaccharomyces cerevisiae. Biochem. Genet.5, 487–495 (1971)

    Google Scholar 

  • Nagai, S.: Induction of the respiratory-deficient mutation in yeast by various synthetic dyes. Science (N.Y.)130, 1188–1189 (1959)

    Google Scholar 

  • Nagley, P., Gingold, E.B., Lukins, H.B., Linnane, A.W.: Biogenesis of mitochondria. XXV. Studies on the mitochondrial genomes of petite mutants of yeast using ethidium bromide as a probe. J. molec. Biol.78, 335–350 (1973)

    Google Scholar 

  • Nagley, P., Linnane, A.W.: Mitochondrial DNA deficient petite mutants of yeast. Biochem. biophys. Res. Commun.39, 989–996 (1970)

    Google Scholar 

  • Nagley, P., Linnane, A. W.: Biogenesis of mitochondria. XXI. Studies on the nature of the mitochondrial genome in yeast: the degenerative effects of ethidium bromide on mitochondrial genetic information in a respiratory competent strain. J. molec. Biol.66, 181–193 (1972)

    Google Scholar 

  • Nagley, P., Mattick, J.S.: Mitochondrial DNA replication in petite mutants of yeast: resistance to inhibition by ethidium bromide, berenil and euflavine. Molec. gen. Genet.152, 277–283 (1977)

    Google Scholar 

  • Nagley, P., Mattick, J.S., Hall, R.M., Linnane, A.W.: Biogenesis of mitochondria. 43. A comparative study of petite induction and inhibition of mitochondrial DNA replication by ethidium bromide and berenil. Molec. gen. Genet.141, 291–304 (1975)

    Google Scholar 

  • Mass, M.M.K.: Differential effects of ethidium bromide on mitochondrial and nuclear DNA synthesis in vivo in cultured mammalian cells. Exp. Cell Res.72, 211–222 (1972)

    Google Scholar 

  • Perlman, P.S., Mahler, H.R.: Molecular consequences of ethidium bromide mutagenesis. Nature (Lond.) New Biol.231, 12–16 (1971)

    Google Scholar 

  • Prunell, A., Bernardi, G.: The mitochondrial genome of wild type yeast cells. IV. Genes and Spacers. J. molec. Biol.86, 825–842 (1974)

    Google Scholar 

  • Roth, J.R.: Frameshift mutations. Ann. Rev. Genet.8, 319–346 (1974)

    Google Scholar 

  • Saunders, G.W., Gingold, E.B., Trembath, M.K., Lukins, H.B., Linnane, A.W.: Mitochondrial genetics in yeast: segregation of a cytoplasmic determinant in crosses and its loss or retention in the petite. In: Autonomy and biogenesis of mitochondria and chloroplasts (Boardman, N.K., Linnane, A.W. and Smillie, R.M., eds.), pp. 185–193. Amsterdam: North Holland Publishing Co. 1971

    Google Scholar 

  • Slonimski, P.P.: A specific relation between enzymic adaptation and cytoplasmic mutation. Symp. Soc. gen. Microbiol.3, 76–94 (1953)

    Google Scholar 

  • Slonimski, P.P., Perrodin, G., Croft, J.H.: Ethidium bromide induced mutation of yeast mitochondria: complete transformation of cells into respiratory deficient non-chromosomal “petites”. Biochem. biophys. Res. Commun.30, 232–239 (1968)

    Google Scholar 

  • Smith, C.A., Jordan, J.M., Vinograd, J.: In vivo effects of intercalating drugs on the superhelix density of mitochondrial DNA isolated from human and mouse cells in culture. J. molec. Biol.59, 255–272 (1971)

    Google Scholar 

  • Tewari, K.K., Votsch, W., Mahler, H.R., Mackler, B.: Biochemical correlates of respiratory deficiency. VI. Mitochondrial DNA. J. molec. Biol.20, 453–481 (1966)

    Google Scholar 

  • Wallace, P.G., Huang, M., Linnane, A.W.: The biogenesis of mitochondria. II. The influence of medium composition on the cytology of anaerobically grownSaccharomyces cerevisiae. J. Cell Biol.37, 207–220 (1968)

    Google Scholar 

  • Waring, M.: Variation of the supercoils in closed circular DNA by binding of antibiotics and drugs: evidence for molecular models involving intercalation. J. molec. Biol.54, 247–279 (1970)

    Google Scholar 

  • Williamson, D.H.: The effect of environmental and genetic factors on the replication of mitochondrial DNA in yeast. In: Control of organelle development (Miller, P.L., ed.), pp. 247–276. Cambridge: University Press 1970

    Google Scholar 

  • Williamson, D.H., Fennell, D.J.: Apparent dispersive replication of yeast mitochondrial DNA as revealed by density labelling experiments. Molec. gen. Genet.131, 193–207 (1974)

    Google Scholar 

  • Wintersberger, E.: Synthesis of DNA in isolated yeast mitochondria. In: Biochemical aspects of the biogenesis of mitochondria (Slater, E.C., Tager, J.M., Papa, S. and Quagliariello, E., eds.), pp. 189–201. Bari: Adriatica Editrice 1968

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Gajewski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattick, J.S., Nagley, P. Comparative studies of the effects of acridines and other petite inducing drugs on the mitochondrial genome ofSaccharomyces cerevisiae . Molec. Gen. Genet. 152, 267–276 (1977). https://doi.org/10.1007/BF00693080

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00693080

Keywords

Navigation