Polymer Bulletin

, Volume 31, Issue 3, pp 285–291 | Cite as

Synthesis and characterization of copolymers of styrene andN-methylolacrylamide

  • J. B. Frias
  • F. J. Lopez
  • N. Alonso
  • E. Mendizabal
  • J. E. Puig


Copolymers of styrene (ST) and N-methylolacrylamide (NMA) were synthesized by emulsion polymerization for different initial weight ratios of ST/NMA. Fast reaction rates and high conversions are achieved regardless of the ST/NMA ratio. NMA content in copolymers, as deduced by DSC, FTIR and Kjeldhal analysis, is higher as the initial ST/NMA ratio decreases. Glass transition temperature of copolymers increases as the ST/NMA ratio decreases and it decreases with reaction time for a fixed ST/NMA ratio. The latter results and FTIR spectra as well as Kjeldhal analysis as a function of reaction time indicate that NMA reacts initially in the aqueous phase, after which ST, because of its overall larger concentration, is incorporated preferentially in the polymer.


Polymer Reaction Time Transition Temperature FTIR Spectrum Aqueous Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.H.Yocum and E.B.Nyquist, “Functional Monomers. Vol. I”, Marcel Dekker, New York (1973).Google Scholar
  2. 2.
    E.N. Rostovskii and L.M. Novichkova, Academy of Science of the USSR Zhurnal Prikladnoi41, 346 (1966).Google Scholar
  3. 3.
    Manual del Uso de la N-metilolacrilamida, Cyanamid de México, (1960)Google Scholar
  4. 4.
    V.I. Eliseeva, S.S. Ivanchev, S.I. Kuchanov and A.V. Lebedev, “Emulsion Polymerization and Its Applications in Industry” (Consultant Bureau, New York and London, 1980)Google Scholar
  5. 5.
    D.C. Blackley and A.R.D. Sebastian, Br. Polym. J.21, 313 (1989).Google Scholar
  6. 6.
    L.F. Antonova, G.V. Leplyanin, Y.Y. Zayev and S.R. Rafikov, Polym. Sci. U.S.S.R.20, 778 (1978).Google Scholar
  7. 7.
    S. Corona-Galván, A. Martínez, J. Castañeda, J.E. Puig, P.C. Schulz, J.M. Domínguez and A. Ruano, Polym. Eng. Sci.31 404 (1991).Google Scholar
  8. 8.
    S. Kamogawa, Koguyo Kagaku Zasshi61, 1024 (1958);62, 1117 (1959)Google Scholar
  9. 9.
    A. Zozel, Actes XVII Congrés AFTPV Nice 1 (1987).Google Scholar
  10. 10.
    M. Hidalgo, J. Guillot and J.Y. Cavaille, J. Applied Polym. Sci. Applied Polym Symp.49, 103 (1991).Google Scholar
  11. 11.
    H. Kawagushi, Y. Sugi and Y. Ohisuka, J. Applied Polym. Sci.26, 1649 (1981).Google Scholar
  12. 12.
    R.B. Bradstreet, “The Kjeldahl Method for Organic Nitrogen”, Academic Press, New York (1965).Google Scholar
  13. 13.
    C.J. Pouchert, “The Aldrich's Library of FT-IR Spectra”, Aldrich Chem. Co., Milwaukee (1985).Google Scholar
  14. 14.
    J.D. Ferry, “Viscoelastic Properties of Polymers”, Wiley (1981)Google Scholar
  15. 15.
    J.B. Frías, M.S. Thesis, Universidad de Guadalajara (1993).Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • J. B. Frias
    • 1
  • F. J. Lopez
    • 1
  • N. Alonso
    • 1
  • E. Mendizabal
    • 1
  • J. E. Puig
    • 1
  1. 1.Facultad de Ciencias QuimicasUniversidad de GuadalajaraGuadalajaraMexico

Personalised recommendations