The influence of temperature and photophase on daily torpor inSminthopsis macroura (Dasyuridae: Marsupialia)

  • Fritz Geiser
  • R. V. Baudinette


  1. 1.

    Body temperatures (T b) and rates of oxygen consumption (\(\dot V_{O_2 }\)) during torpor of the insectivorous marsupialSminthopsis macroura were determined at different ambient temperatures (T a) and photophases.

  2. 2.

    Torpor was observed in the morning and usually commenced before the onset of dawn. In the afternoon animals were normothermic. The duration of torpor was usually between 3 and 9 h with a maximum of 17 h and 15 min.

  3. 3.

    All animals entered torpor spontaneously at aT a of 13°C, but if food was withheld torpor was induced below 17°C.

  4. 4.

    An increase in\(\dot V_{O_2 }\) andT b during torpor was observed below aT a of about 12°C. The body temperature below which endothermic arousal is no longer possible (the critical arousal temperature) was less than 15.1°C.

  5. 5.

    An eight hour phase shift of the dark-light cycle resulted in a corresponding shift in the diurnal torpor-activity cycle and it appears that light is an important cue for the timing of daily torpor.



Arousal Rate Placental Mammal Daily Torpor Sugar Glider Physiol Zool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Climate of Australia (1983) Australian Government Publishing Service, Canberra, pp 14–17Google Scholar
  2. Eisentraut M (1929) Beobachtungen über den Winterschlaf der Haselmaus (Muscardinus avellanarius L.). Z Säugetierkd 4:213–239Google Scholar
  3. Eisentraut M (1934) Der Winterschlaf der Fledermäuse mit besonderer Berücksichtigung der Wärmeregulation. Z Morphol Oekol Tiere 29:231–267CrossRefGoogle Scholar
  4. Fleming MR (1980) Thermoregulation and torpor in the sugar glider,Petaurus breviceps (Marsupialia: Petauridae). Aust J Zool 28:521–534CrossRefGoogle Scholar
  5. Frey H (1980) Le metabolisme énergétique deSuncus etruscus (Soricidae, Insectivara) en torpeur. Rev Suisse Zool 87:739–748Google Scholar
  6. Gaertner RA, Hart JS, Roy OZ (1973) Seasonal spontaneous torpor in the white-footed mousePeromyscus leucopus. Comp Biochem Physiol 45A:169–181CrossRefGoogle Scholar
  7. Geiser F, Augee ML, McCarron HCK, Raison JK (1984) Correlates of torpor in the insectivorous dasyurid marsupialSminthopsis murina. Aust Mammal 7:185–191Google Scholar
  8. Geiser F (1985) Hibernation in pygmy possums (Marsupialia: Burramyidae). Comp Biochem Physiol 81A:459–463CrossRefGoogle Scholar
  9. Godfrey GK (1968) Body temperatures and torpor inSminthopsis crassicaudata andS. larapinta (Marsupialia: Dasyuridae). J Zool 156:499–511CrossRefGoogle Scholar
  10. Hainsworth FR, Wolf LL (1970) Regulation of oxygen consumption and body temperature during torpor in a humaming bird,Eulampis jugularis. Science 168:368–369PubMedGoogle Scholar
  11. Heldmaier G, Steinlechner S (1981) Seasonal pattern and energetics of short daily torpor in the djungarian hamster,Phodopus sungorus. Oecologia 48:265–270CrossRefGoogle Scholar
  12. Hudson JW (1965) Temperature regulation in the pigmy mouse,Balomys taylori. Physiol Zool 38:265–270Google Scholar
  13. Hudson JW, Scott JM (1979) Daily torpor in the laboratory mouseMus musculus var. albino. Physiol Zool 52:205–218Google Scholar
  14. Johansen K, Krog J (1959) Diurnal body temperature variations and hibernation in the birchmouse,Sicista betulina. Am J Physiol 196:1200–1204PubMedGoogle Scholar
  15. Kayser C (1961) The physiology of natural hibernation. Pergamon Press, Oxford, pp 30–33Google Scholar
  16. Kulzer E (1965) Temperaturregulation bei Fledermäusen (Chiroptera) aus verschiedenen Klimazonen. Z Vergl Physiol 50:1–34CrossRefGoogle Scholar
  17. Lyman CP, Willis JS, Malan A, Wang LCH (1982) Hibernation and torpor in mammals and birds. Academic Press, New York, pp 12–36Google Scholar
  18. MacMillen RE (1965) Aestivation in the cactus mousePeromyscus eremicus. Comp Biochem Physiol 16:227–247PubMedCrossRefGoogle Scholar
  19. MacMillen RE, Nelson JE (1969) Bioenergetics and body size in dasyurid marsupials. Am J Physiol 217:1246–1251PubMedGoogle Scholar
  20. Morhardt JE (1970) Body temperatures of white footed mice (Peromyscus sp.) during daily torpor. Comp Biochem Physiol 33:423–439PubMedCrossRefGoogle Scholar
  21. Morhardt JE, Hudson JW (1966) Daily torpor induced in white-footed mice (Peromyscus spp.) by starvation. Nature 212:1046–1047CrossRefGoogle Scholar
  22. Morrison P, McNab BK (1962) Daily torpor in a Brazilian murine opossum (Marmosa). Comp Biochem Physiol 6:57–68CrossRefGoogle Scholar
  23. Morton SR (1983) Stripe-faced dunnart,Sminthopsis macroura. In: Strahan R (ed) Complete book of Australian mammals. Angus and Robertson, Syndney, p 63Google Scholar
  24. O'Reilly HM, Armstrong SM, Coleman GJ (1984) Response to variations in lighting schedules on the circadian activity rhythms ofSminthopsis macroura frogatti (Marsupialia: Dasyuridae). Aust Mammal 7:89–99Google Scholar
  25. Raths P, Kulzer E (1976) Physiology of hibernation and related lethargic states in mammals and birds. Bonn Zool Monogr 9:1–93Google Scholar
  26. Tucker VA (1965) Oxygen consumption, thermal conductance and torpor in the Californian pocket mousePerognathus californicus. J Cell Comp Physiol 65:393–404CrossRefGoogle Scholar
  27. Wallis RL (1982) Adaptation to low environmental temperatures in the carnivorous marsupials. In: Archer M (ed) Carnivorous marsupials. R Zool Soc New South Wales, Sydney, pp 285–290Google Scholar
  28. Wyss OAM (1932) Winterschlaf und Wärmehaushalt, untersucht am Siebenschläfer (Myoxus glis) Pflügers Archiv 229:599–635CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Fritz Geiser
    • 1
  • R. V. Baudinette
    • 1
  1. 1.School of Biological SciencesThe Flinders University of South AustraliaAdelaideAustralia

Personalised recommendations