Skip to main content
Log in

Na+-dependent amino acid transport in bacteria-free sea urchin larvae

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Summary

  1. 1.

    Influx of14C-labeled serine and leucine into axenic larvae ofStrongylocentrotus purpuratus occurs from substrate concentrations as low as 125 nmolar. The relation between substrate concentration and the rate of influx has the form of a rectangular hyperbola and is well described by the Michaelis-Menten equation. The apparent kinetic constantsJ i max andK t are both dependent on the sodium concentration of the medium.

  2. 2.

    Analysis of the relation between the measured influx of serine or leucine, and sodium concentration suggests that two sodium ions are transported per amino acid. The data also suggest cooperative interaction between the binding sites for both sodium and the amino acid substrate.

  3. 3.

    We provide the first clear evidence of sodium coupled net entry of 9 neutral amino acids, as determined by high performance liquid chromatography. We propose a model for transport of the form (Na+)2·(carrier)·(S) and provide evidence that this quaternary complex is translocated intact across the cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahearn GA (1974) Kinetic characteristics of glycine transport by the isolated midgut of the marine shrimp,Penaeus marginatus. J Exp Biol 61:677–696

    PubMed  CAS  Google Scholar 

  • Ahearn GA (1976) Co-transport of glycine and sodium across the mucosal border of the midgut epithelium of the marine shrimp,Penaeus marginatus. J Gen Physiol 258:499–520

    CAS  Google Scholar 

  • Anderson JW, Bedford WB (1973) The physiological response of the estuarine clam,Rangia cuneata (Gray) to salinity. II. Uptake of glycine. Biol Bull 144:229–247

    PubMed  CAS  Google Scholar 

  • Cavanaugh GM (ed) (1956) Formulae and Methods V. of the Marine Biological Laboratory Chemical Room. Marine Biological Laboratory, Woods Hole, Mass

    Google Scholar 

  • Christensen H, DeCespedes C, Handiegten M, Renquist G (1973) Energization of amino acid transport, studied for the Ehrlich ascites tumor cell. Biochim Biophys Acta 300:487–522

    PubMed  CAS  Google Scholar 

  • Davis JP, Stephens GC (1984a) Uptake of free amino acids by bacteria-free larvae of the sand dollar,Dendraster excentricus. Am J Physiol 247:R733-R739

    PubMed  CAS  Google Scholar 

  • Davis JP, Stephens GC (1984b). Regulation of net amino acid exchange in sea urchin larvae. Am J Physiol 247:R1029-R1037

    PubMed  CAS  Google Scholar 

  • Eavenson E, Christensen HN (1967) Transport systems for neutral amino acids in the pigeon erythrocyte. J Biol Chem 242:5386–5396

    PubMed  CAS  Google Scholar 

  • Epel D (1972) Activation of an Na+-dependent amino acid transport system upon fertilization of sea urchin eggs. Exp Cell Res 72:74–89

    Article  PubMed  CAS  Google Scholar 

  • Ferraris RP, Ahearn GA (1984) Sugar and amino acid transport in fish intestine. Comp Biochem Physiol 77A:397–413

    Article  CAS  Google Scholar 

  • Fry BJ, Gross PR (1970) Patterns and rates of protein synthesis in sea urchin embryos. Dev Biol 21:125–146

    Article  PubMed  CAS  Google Scholar 

  • Gomme J (1981) D-glucose transport across the apical membrane of the surface epithelium ofNereis diversicolor. Membrane Biol 62:29–46

    Article  CAS  Google Scholar 

  • Inui Y, Christensen HN (1966) The Na+-sensitive transport of neutral amino acids in Ehrlich cell. J Gen Physiol 50:203–224

    Article  PubMed  CAS  Google Scholar 

  • Jacquez JA (1973) Sodium dependence of maximum fluxJ m andK m of amino acid transport in Ehrlich ascites cells. Biochim Biophys Acta 318:411–425

    Article  CAS  Google Scholar 

  • Jacquez JA, Schafer JA (1969) Na+ and K+ electrochemical potential gradients and transport of alpha-aminoisobutyric acid in Ehrlich ascites tumor cells. Biochim Biophys Acta 193:368–383

    Article  PubMed  CAS  Google Scholar 

  • Laris PC, Pershadsingh HR, Johnstone RM (1976) Monitoring membrane potential in Ehrlich ascites tumor cells by means of a fluorescent dye. Biochim Biophys Acta 436:475–488

    Article  PubMed  CAS  Google Scholar 

  • Lehninger AL (1975) Biochemistry. Worth Publishers, New York

    Google Scholar 

  • Manahan DT, Davis JP, Stephens GC (1983a) Bacteria-free sea urchin larvae: selective uptake of neutral amino acids from seawater. Science 220:204–206

    CAS  Google Scholar 

  • Manahan DT, Wright SH, Stephens GC (1983b) Bimultaneous determination of net uptake of 16 amino acids by a marine bivalve. Am J Physiol 244:R832-R838

    PubMed  CAS  Google Scholar 

  • Manahan DT, Wright SH, Stephens GC, Rice MA (1982) Transport of dissolved amino acids by the musselMytilus edulis: demonstration of net uptake from seawater. Science 215:1253–1255

    CAS  Google Scholar 

  • Moody WT, Hagiwara S (1982) Block of inward rectifications by intracellular H+ in immature oocytes of the starfishMediaster aequalis. J Gen Physiol 79:115–130

    Article  PubMed  CAS  Google Scholar 

  • Segal IH (1975) Enzyme Kinetics. Wiley and Sons, New York

    Google Scholar 

  • Scheffe H (1959) The analysis of variance. Wiley and Sons, New York

    Google Scholar 

  • Schultz SG (1977) Sodium-coupled transport by small intestine: A status report. Am J Physiol 233:E249-E254

    PubMed  CAS  Google Scholar 

  • Schultz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Biol Rev. 50:637–718

    CAS  Google Scholar 

  • Stevens BR, Preston RL (1980) The effect of sodium on the kinetics ofL-alanine influx by the integument of the marine polychaete,Glycera dibranchiata. J Exp Zool 212:129–138

    Article  CAS  Google Scholar 

  • Vidaver GA (1964) Transport of glycine by pigeon red cells. Biochemistry 3:662–667

    Article  PubMed  CAS  Google Scholar 

  • Wheeler KP, Christensen HN (1967) Interdependent fluxes of amino acids and sodium ion in the pigeon red blood cell. J Biol Chem 242:3782–3788

    PubMed  CAS  Google Scholar 

  • Wright SH, Stephens GC (1977) Characteristics of influx and net flux of amino acids inMytilus edulis. Biol Bull 152:295–310

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, J.P., Keenan, C.L. & Stephens, G.C. Na+-dependent amino acid transport in bacteria-free sea urchin larvae. J Comp Physiol B 156, 121–127 (1985). https://doi.org/10.1007/BF00692934

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00692934

Keywords

Navigation