Foundations of Physics Letters

, Volume 5, Issue 3, pp 221–248 | Cite as

Finsler-spacetime tangent bundle

  • Howard E. Brandt


The Levi-Civita connection coefficients of the spacetime tangent bundle, for the case of a Finsler spacetime, are reduced to the form given by Yano and Davies for a generic tangent bundle of a Finsler manifold. A useful expression is also obtained for the Riemann curvature scalar of a Finsler-spacetime tangent bundle.

Key words

quantum gravity general relativity spacetime tangent bundle Finsler spacetime maximal proper acceleration differential geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. E. Brandt, “Maximal proper acceleration and the structure of spacetime,”Found. Phys. Lett. 2, 39, 405 (1989).Google Scholar
  2. 2.
    H. E. Brandt, “Structure of spacetime tangent bundle,”Found. Phys. Lett. 4, 523 (1991).Google Scholar
  3. 3.
    H. E. Brandt, “Connections and geodesics in the spacetime tangent bundle,”Found. Phys. 21, 1285 (1991).Google Scholar
  4. 4.
    H. E. Brandt, “Differential geometry of spacetime tangent bundle,”Internat. J. Theor. Phys. 31, 575 (1992).Google Scholar
  5. 5.
    H. E. Brandt, “Riemann curvature scalar of spacetime tangent bundle,”Found. Phys. Lett. 5, 43 (1992).Google Scholar
  6. 6.
    Paul Finsler,Über Kurven und Flächen in allgemeinen Räumen (Birkhäuser, Basel, 1951).Google Scholar
  7. 7.
    E. Cartan,Les Espaces de Finsler (Hermann, Paris, 1934).Google Scholar
  8. 8.
    H. Rund,The Differential Geometry of Finsler Spaces (Springer, Berlin, 1959).Google Scholar
  9. 9.
    G. S. Asanov,Finsler Geometry, Relativity and Gauge Theories (Reidel, Dordrecht, 1985).Google Scholar
  10. 10.
    A. Bejancu,Finsler Geometry and Applications (Ellis Horwood, New York, 1990).Google Scholar
  11. 11.
    Makoto Matsumoto,Foundations of Finsler Geometry and Special Finsler Spaces (Kaiseisha Press, Shigaken, Japan, 1986).Google Scholar
  12. 12.
    K. Yano and E. T. Davies, “On the tangent bundles of Finsler and Riemannian manifolds,”Rend. Circ. Mat. Palermo 12, 211 (1963).Google Scholar
  13. 13.
    K. Yano and S. Ishihara,Tangent and Cotangent Bundles (Marcel Dekker, New York, 1973).Google Scholar
  14. 14.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973).Google Scholar
  15. 15.
    K. Yano and E. T. Davies, “On the connection in Finsler space as an induced connection,”Rend. Circ. Mat. Palermo (2)3, 409 (1955).Google Scholar
  16. 16.
    A. Deicke, “Über die Darstellung von Finsler-Räumen durch nichtholonome Mannigfaltigkeiten in Riemannschen Räumen,”Arch. Math. 4, 234 (1953).Google Scholar
  17. 17.
    A. Deicke, “Finsler spaces as non-holonomic subspaces of Riemannian spaces,”J. London Math. Soc. 30, 53 (1955).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Howard E. Brandt
    • 1
  1. 1.Harry Diamond LaboratoriesAdelphiUSA

Personalised recommendations