Skip to main content
Log in

Autotrophic synthesis of activated acetic acid from two CO2 inMethanobacterium thermoautotrophicum

I. Properties of in vitro system

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

An in vitro system of autotropic synthesis of activated acetic acid from14CO2 inMethanobacterium thermoautotrophicum was developed.

  1. (1)

    A recognized14CO2-fixation product in vitro was activated [14C] acetic acid. It could be trapped enzymatically into citrate and released again as [14C] acetate by citrate synthase and citrate lyase, respectively.

  2. (2)

    The synthesis of both activated acetic acid and methane from CO2 proceeded in parallel under a variety of conditions. Both of these processes were stimulated greatly and to the same extent by the addition of methyl coenzyme M to the assay.

  3. (3)

    Various inhibitors of methanogenesis tested also inhibited acetate synthesis, e.g. CH2Cl2, CHCl3, CCl4, N2O, and bromoethane sulfonic acid. Cyanide specifically inhibited the synthesis of activated acetic acid, whereas methane formation was unaffected. Cyanide inhibition was relieved by adding CO, whereas the inhibition by the other compounds was not.

The data suggest: The product studied in vitro was acetyl CoA. Its synthesis involves intermediates of CO2 reduction to methane. In addition, a cyanide-sensitive reaction is required which does not participate in CO2 reduction to methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balderston WL, Payne WJ (1976) Inhibition of methanogenesis in salt marsh sediments and whole-cell suspension of methanogenic bacteria by nitrogen oxides. Appl Environ Microbiol 32:264–269

    Google Scholar 

  • Dagley S (1974) Citrat. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol 2. Verlag Chemie. Weinheim, pp 1607–1611

    Google Scholar 

  • Daniels L, Zeikus JG (1978) One-carbon metabolism in methanogenic bacteria: analysis of short-term fixation products of14CO2 and14CH3OH incorporated into whole cells. J Bacteriol 136:75–84

    Google Scholar 

  • Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    Google Scholar 

  • Deacon R, Lumb M, Muir M, Perry J, Chanarin I, Minty B, Halsey MJ, Nunn (1979) Studies on cobalamin and folate metabolism in rats exposed to nitrous oxide (N2O). In: Dolphin D (ed) Vitamin B12. Walter de Gruyter & Co. Berlin, New York, pp 1055–1060

    Google Scholar 

  • Decker K (1974) Acetyl-Coenzym A. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol 2. Verlag Chemie, Weinheim, pp 2037–2042

    Google Scholar 

  • Drake HL, Hu SI, Wood HG (1981) Purification of five components fromClostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. J Biol Chem 256:11137–11144

    Google Scholar 

  • Eden G, Fuchs G (1982) Total synthesis of acetyl CoA involved in autotrophic CO2 fixation inAcetobacterium woodii. Arch Microbiol 133:66–74

    Google Scholar 

  • Ellefson WL, Whitman WB, Wolfe RS (1982) Nickel-containing factor F430: Chromophore of the methylreductase ofMethanobacterium. Proc Natl Acad Sci USA 79:3707–3710

    Google Scholar 

  • Fuchs G, Stupperich E (1978) Evidence for an incomplete reductive carboxylic acid cycle inMethanobacterium thermoautotrophicum. Arch Microbiol 118:121–125

    Google Scholar 

  • Fuchs G, Stupperich E (1980) Acetyl CoA, a central intermediate of autotrophic CO2 fixation inMethanobacterium thermoautotrophicum. Arch Microbiol 127:267–272

    Google Scholar 

  • Fuchs G, Stupperich E (1982) Autotrophic CO2 fixation pathway inMethanobacterium thermoautotrophicum. In: Kandler O (ed) Archaebacteria. Fischer, Stuttgart New York, pp 277–288

    Google Scholar 

  • Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate inMethanobacterium thermoautotrophicum. Arch Microbiol 117:61–66

    Google Scholar 

  • Fuchs G, Stupperich E, Eden G (1980) Autotrophic CO2 fixation inChlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch Microbiol 128:64–71

    Google Scholar 

  • Gunsalus RP, Wolfe RS (1977) Stimulation of CO2 reduction to methane by methyl-Coenzyme M in extracts ofMethanobacterium. Biochem Biophys Res Commun 76:790–795

    Google Scholar 

  • Gunsalus RP, Wolfe RS (1978) ATP activation and properties of the methyl Coenzyme M reductase system inMethanobacterium thermoautotrophicum. J Bacteriol 135:851–857

    Google Scholar 

  • Gunsalus RP, Romesser JA, Wolfe RS (1978) Preparation of coenzyme M analogues and their activity in the methyl coenzyme M reductase system ofMethanobacterium thermoautrophicum. Biochemistry 17:2374–2377

    Google Scholar 

  • Hu SI, Drake HL, Wood HG (1982) Synthesis of acetyl coenzyme M from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes fromClostridium thermoaceticum. J Bacteriol 149:440–448

    Google Scholar 

  • Hutten TJ, Henk de Jong M, Peeters Ben PH, Van der Drift C, Vogels GD (1981) Coenzyme M derivatives and their effects on methane formation from carbon dioxide and methanol by cell extracts ofMethanosarcina barkeri. J Bacteriol 145:27–34

    Google Scholar 

  • Kenealy WR, Zeikus JG (1982) One-carbon metabolism in methanogens: Evidence for synthesis of a two-carbon cellular intermediate and unification of catabolism and anabolism inMethanosarcina barkeri. J Bacteriol 151:932–941

    Google Scholar 

  • Krzycki S, Zeikus JG (1980) Quantification of corrinoids in methanogenic bacteria. Curr Microbiol 3:243–245

    Google Scholar 

  • Lamprecht W, Trautschold J (1974) Adenosine-5′-triphosphat: Bestimmung mit Hexokinase and Glucose-6-phosphat-Dehydrogenase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol 2. Verlag Chemie, Weinheim, pp 2151–2160

    Google Scholar 

  • Leigh JA (1983) Levels of water-soluble vitamins in methanogenic and nonmethanogenic bacteria. Appl Environ Microbiol 45: 800–830

    Google Scholar 

  • Ljungdahl L, Wood HG (1982) Acetate synthesis. In: Dolphin D (ed) Vitamin B12. Academic Press. New York, pp 165–202

    Google Scholar 

  • Pfaltz A, Jaun B, Fässler A, Eschenmoser A, Jaenchen R, Gilles HH, Diekert G, Thauer RK (1982) Zur Kenntnis des Faktors F430 aus methanogenen Bakterien: Struktur des porphinoiden Ligandsystems. Helv Chim Acta 65:828–865

    Google Scholar 

  • Prins RA, Van Nevel CJ, Demeyer DI (1972) Pure culture studies of inhibition for methanogenic bacteria. Antonic van Leeuwenhock 38:281–287

    Google Scholar 

  • Roberton AM, Wolfe RS (1969) ATP requirement for methanogenesis in cell extracts of methanobacterium strain M.o.H. Biochem Biophys Acta 192:420–429

    Google Scholar 

  • Rössle M, Kreusch J, Decker K (1981) Acetyl Coenzyme A and Coenzyme A contents of growingClostridium kluyveri as determined by isotope assays. Arch Microbiol 130:288–293

    Google Scholar 

  • Romesser JA, Wolfe RS (1982) Coupling of methyl Coenzyme M reduction with carbon dioxide activation in extracts ofMethanobacterium thermoautotrophicum. J Bacteriol 152:840–847

    Google Scholar 

  • Scherer P, Sahm H (1981) Effect of trace elements and vitamins on the growth ofMethanosarcina barkeri. Acta Biotechnol 1:57–65

    Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K s,μ max,Y s ofMethanobacterium thermoautotrophicum. Arch Microbiol 127:59–65

    Google Scholar 

  • Simon H, Floss HG (1967) Bestimmung der Isotopenverteilung in markierten Verbindungen. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Smith MR (1983) Reversal of 2-bromoethanesulfonate inhibition of methanogenesis inMethanosarcina sp. J Bacteriol 156:516–532

    Google Scholar 

  • Stadtman TC (1967) Methane formation. Annu Rev Microbiol 21:212–242

    Google Scholar 

  • Stupperich E, Fuchs G (1983) Autotrophic acetyl Coenzyme A synthesis in vitro from two CO2 inMethanobacterium. FEBS Lett 156:345–348

    Google Scholar 

  • Stupperich E, Fuchs G (1984) Autotrophic synthesis of activated acetic acid from two CO2 inMethanobacterium thermoautotrophicum. Evidence for different origins of acetate carbon atoms. Arch Microbiol 139:14–20

    Google Scholar 

  • Taylor GT, Kelly DP, Pirt SJ (1976) Intermediary metabolism in methanogenic bacteria (Methanobacterium) In: Schlegel HG, Gottschalk G, Pfennig N (eds) Proceedings of Symposium on microbial production and utilization of gases (H2, CO2, CO). Akademie der Wissenschaften zu Göttingen. Goltze. Göttingen, pp 173–180

    Google Scholar 

  • Zeikus JG, Fuchs G, Kenealy W, Thauer RK (1977) Oxidoreductases involved in cell carbon synthesis ofMethanobacterium thermoautotrophicum. J Bacteriol 132:604–613

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stupperich, E., Fuchs, G. Autotrophic synthesis of activated acetic acid from two CO2 inMethanobacterium thermoautotrophicum . Arch. Microbiol. 139, 8–13 (1984). https://doi.org/10.1007/BF00692704

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00692704

Key words

Navigation