Journal of Comparative Physiology B

, Volume 159, Issue 1, pp 91–95 | Cite as

Antidiuretic responses to osmotic cutaneous stimulation in the toad,Bufo arenarum

A possible adaptive control mechanism for urine production
  • Silvia Petriella
  • Juan C. Reboreda
  • Marcela Otero
  • Enrique T. Segura


Osmotic stimulation of the skin of the toadBufo arenarum with isotonic (115 mM) or hypertonic (400 mM) NaCl solutions produced a marked and reversible antidiuresis within 5 min. No changes in plasma osmolarity were detected in the course of this response.

Hypophysectomized animals exhibited a lower and delayed antidiuresis when exposed to a hypertonic environment (400 mM NaCl). This antidiuretic response was drastically reduced in normal toads after ten consecutive days of administration of the sympatoplexic guanethidine.

The existence of a feed-forward control of urine production initiated by cutaneous osmotic sensors and involving an adrenergic component is proposed.

Key words

Antidiuresis Reflex Control Adaptive Toad 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolph EF (1934) Influences of the nervous system on the intake and excretion of water by the body. J Cell Comp Physiol 5:123–139Google Scholar
  2. Fitzsimmons JT (1980) Thirst and sodium appetite. Endeavour, New Series 4: 97–101Google Scholar
  3. Gallardo R, Pang PKT, Sawyer WH (1980) Neural influences on bullfrog renal functions. Proc Soc Exp Biol Med 165:233–240Google Scholar
  4. Keppel G (1973) Design and analysis. A researcher's handbook. Prentice Hall, NJGoogle Scholar
  5. Mayer N (1969) Adaptation deRana esculenta a des milieux varies. Etude speciale a l'excretion renale de L'eau et des electrolytes au cours des changements. Comp Biochem Physiol 29:27–50Google Scholar
  6. McBean RL, Goldstein L (1970) Renal function during osmotic stress in the aquatic toadXenopus laevis. Am J Physiol 219:1115–1123Google Scholar
  7. McFarland DJ (1971) Feedback mechanisms in animal behaviour. Academic Press, London, pp 1–279Google Scholar
  8. Morris JL (1983) Effects of renal nerve stimulation on vascular resistance in the toad kidney. Arch Pharmacol 323:335–340Google Scholar
  9. Morris JL, Gibbins IL (1983) Innervation of the renal vasculature of the toad (Bufo marinu). Cell Tissue Res 231:357–376Google Scholar
  10. Petriella, Silvia, Brennan Margarita C, Segura ET (1986) Cambios precoces en la morfologia y funcion renales debidos a la estimulacion osmotica de la piel enBufo arenarum Hensel. Medicina 46:254Google Scholar
  11. Reboreda JC, Segura ET (1984) Electrolyte sensitivity of the skin in the toadBufo arenarum Hensel. Acta Physiol Pharmacol Lat Am 34:37–43Google Scholar
  12. Reboreda JC, Petriella Silvia, Segura ET (1987) Short-term changes in natripheric and hydrosmotic water fluxes across the skin and in urine production due to increases in the osmolarity of the external environment in the toad. Comp Biochem Physiol 88A:571–575Google Scholar
  13. Richards AN, Schmidt CF (1924) A description of the glomerular circulation in the frog's kidney and observations concerning the action of adrenalin and various other substances upon it. Am J Physiol 178–208Google Scholar
  14. Rodriguez EM, Dellmann HD (1970) Hormonal content and ultrastructure of the disconnected neural lobe of the grass frog (Rana pipiens). Gen Comp Endocrinol 15:272–288Google Scholar
  15. Rolls BJ, Rolls ET (1981) The control of drinking. Br Med Bull 37:127–130Google Scholar
  16. Sawyer WH, Pang PKT (1975) Endocrine adaptation to osmotic requirements of the environment. Endocrine factors in osmoregulation by lung fishes and amphibian. Gen Comp Endocrinol 25:224–229Google Scholar
  17. Segura ET, Bandsholm Ulla C, Bronstein A, Woscoboinik D (1982a) Role of the CNS in the control of the water economy of the toadBufo arenarum Hensel. I. Effects of handling, brain lesions, anesthesia and reversible coma upon water uptake, urine production and overall water balance. J Comp Physiol 146:95–100Google Scholar
  18. Segura ET, Bandsholm Ulla C, Bronstein A (1982b) Role of the CNS in the control of the water economy of the toadBufo arenarum Hensel. II. Adrenergic control of water uptake across the skin. J Comp Physiol 146:101–106Google Scholar
  19. Segura ET, Reboreda JC, Skorka A, Cuello Maria E, Petriella Silvia (1984) Role of the CNS in the control of the water economy of the toadBufo arenarum Hensel. III. Skin permeability increases to raised osmotic pressure of the external ‘milieu’. J Comp Physiol B 154:573–578Google Scholar
  20. Segura ET, Reboreda JC, Petriella Silvia, Brennan Margarita C, Lemoine AP (1986) Adaptive control of the water balance in the toad,Bufo arenarum Hensel. Proc Int Union Physiol Scs vol XVI, p 508 (P471.13)Google Scholar
  21. Segura ET, Cuello Maria E, Petriella Silvia, Orti G (1987) Antidiuretic responses to osmotic, ionic or volume stimulation of the brain in the unanesthetized toad,Bufo arenarum Hensel. Comp Biochem Physiol 87A:107–110Google Scholar
  22. Shoemaker VH, Waring H (1968) Effect of hypothalamic lesions on the water response of a toadBufo marinus. Comp Biochem Physiol 24:47–54Google Scholar
  23. Tsuneki Kazuhiko, Kobayashi H, Gallardo R, Pang PKT (1984) Electron microscopic study of the innervation of the renal tubules and urinary bladder epithelium inRoma catesbeiana andNecturus maculosus. J Morphol 181:143–153Google Scholar
  24. Yokota SD, Hilman SS (1984) Adrenergic control of the anuran cutaneous hydrosmotic response. Gen Comp Endocrinol 53:309–314Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Silvia Petriella
    • 1
  • Juan C. Reboreda
    • 1
  • Marcela Otero
    • 1
  • Enrique T. Segura
    • 1
  1. 1.Laboratorio de Fisiologia del ComportamientoInstituto de Biologia y Medicina ExperimentalBuenos AiresArgentina

Personalised recommendations