Journal of Low Temperature Physics

, Volume 89, Issue 1–2, pp 257–266 | Cite as

Observation of tunneling and magneto-tunneling out of a 2D Wigner crystal

  • S. Yücel
  • L. Menna
  • E. Y. Andrei
Papers Based On Oral Presentations


We measured the escape rates of surface state electrons from an electron layer confined at the liquid helium-vacuum interface in the temperature range of 30–450mK, and for densities 0.02–2.2×108cm−2. Below 200mK the escape rates were temperature independent and converged to the expected single particle tunneling rates in the zero density limit, where correlations are negligible. The single particle rates were enhanced exponentially as the density was increased up to a critical densitync. Atnc the escape process becomes extremely nonlinear. As the barrier is raised so that the escape rates decrease below 5.0×10−4sec−1, a new very weakly density and external field dependent mechanism seems to dominate the escape. Thermally activated escape was observed above 250mK and the activation energies were in good agreement with the expected values. Upon application of a magnetic field in the plane of the electron layer, the rates become strongly temperature and field dependent even at the lowest temperaturesT≤40mK. At these temperatures and low densities rates are suppressed four orders of magnitude in a few kGauss magnetic fields.


Activation Energy Single Particle Dependent Mechanism Escape Rate Density Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. N. Persson and A. Baratoff,B38, 9619(1988)Google Scholar
  2. 2.
    E. Turlot, D. Esteve, C. Urbina, J. M. Martinis, M. H. Deverot, S. Linkwitz, and H. Grabert, Phys. Rev. Lett.62, 1788(1989)Google Scholar
  3. 3.
    F. Capasso, K. Mohammed, and A. Y. Cho, IEEE J. Quantum Electron.QE-22 1853(1986)Google Scholar
  4. 4.
    E. Y. Andrei, S. Yücel, and L. Menna, Phys. Rev. Lett.67, 3704(1991)Google Scholar
  5. 5.
    S. Yücel, E. Y. Andrei, Phys. Rev.B42, 2088(1990)Google Scholar
  6. 6.
    M. Y. Azbel, P. M. Platzman, Phys. Rev. Lett.65, 1376(1990)Google Scholar
  7. 7.
    J. M. Goodkind, G. F. Saville, A. Ruckenstein, and P. M. Platzman, Phys. Rev.B38, 8778(1988)Google Scholar
  8. 8.
    P. Gueret, E. Marclay, and H. Meier, Appl. Phys. Lett.53, 1617(1988) and Solid State Commun.68, 1671(1988)Google Scholar
  9. 9.
    E. H. Hauge, and J. A. Stovneng, Rev. Mod. Phys.61, 917(1889)Google Scholar
  10. 10.
    E. Y. Andrei, F. I. B. Williams, C. D. Glattli, and G. Deville in: The Physics of Low Dimensional Semiconductors (Plenum, New York, 1992)Google Scholar
  11. 11.
    C. Grimes and G. Adams Phys. Rev. Lett.42, 795 (1979).Google Scholar
  12. 12.
    Y. Iye, K. Kono, K. Kajita, and W. Sasaki, J. Low Temp. Phys.38, 293(1980)Google Scholar
  13. 13.
    H. Totsuji, Phys. Rev.B17, 399(1978)Google Scholar
  14. 14.
    M. W. Cole and M. H. Cohen, Phys. Rev. Lett.23, 1238(1969)Google Scholar
  15. 15.
    C. C. Grimes, T. R. Brown, M. L. Burns, and C. L. Zipfel, Phys. Rev.B13, 140(1976)Google Scholar
  16. 16.
    C. D. Glattli, E. Y. Andrei, G. Deville, J. Poitrenaud, and F. I. B. Williams, Phys. Rev. Lett.54, 1710 (1985)Google Scholar
  17. 17.
    S. Nagano, S. Ichimaru, H. Totsuji and N. Itoh, Phys. Rev.B19, 2249(1979)Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • S. Yücel
    • 1
  • L. Menna
    • 1
  • E. Y. Andrei
    • 1
  1. 1.Department of Physics and AstronomyRutgers UniversityPiscataway

Personalised recommendations