Advertisement

Journal of comparative physiology

, Volume 122, Issue 3, pp 385–390 | Cite as

Contractile and histochemical properties of skeletal muscles in hibernating and awake golden hamsters

  • F. Vyskočil
  • E. Gutmann
Article

Summary

  1. 1.

    Parameters of the isometric twitch contraction in vitro (latency period, maximal rate of tension development, contraction and relaxation time) and the histochemical muscle fibre pattern of the fast extensor digitorum longus, the slow soleus and the diphragm muscles were determined in awake and hibernating golden hamster.

     
  2. 2.

    Differences of contraction properties between fast and slow muscles are maintained at both 22°C and 37°C in muscles of hibernating hamsters. Hibernation did not affect the temperature dependence of contraction properties of fast and slow musles.

     
  3. 3.

    During hibernation the muscle fibre pattern of all the muscles tested is maintained with respect to ATP-ase and phosphorylase activity, it becomes, however, more uniform and there is an increase in activity of oxidative enzymes (succinic dehydrogenase).

     

Keywords

Skeletal Muscle Relaxation Time Latency Period Maximal Rate Phosphorylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burke, R.E., Levine, D.N., Zajac, F.E., Tsairis, P., Engel, W.K.: Mammalian motor units: Physiological-histochemical correlation in three types in cat gastrocnemius. Science174, 709–712 (1971)Google Scholar
  2. Chatfield, P.O., Battista, A.F., Lyman, C.P., Garcin, J.P.: Effects of cooling on nerve conduction in a hibernator (golden hamster) and non-hibernator (albino rat). Amer. J. Physiol.155, 179–185 (1948)Google Scholar
  3. Engel, W.K.: The essentiality of histo- and cytochemical studies of skeletal muscle in the investigation of neuromuscular disease. Neurology12, 778–784 (1962)Google Scholar
  4. Guth, L., Samaha, F.J.: Procedure for the histochemical demonstration of actomyosin ATPase. Exp. Neurol.28, 365–367 (1970)Google Scholar
  5. Gutmann, E.: Effect of transposition on contractile and histochemical properties of muscle. Neurosci. Letters2, 273–277 (1976)Google Scholar
  6. Kugelberg, E., Edström, L.: Differential histochemical effects of muscle contraction on phosphorylase and glycogen in various types of fibres. Relation to fatigue. J. Neurol. Neurosurg. Psychiat.31, 415–423 (1968)Google Scholar
  7. Melichar, I., Brožek, G., Jánský, L., Vyskočil, F.: Effect of hibernation and noradrenaline on acetylcholine release and action at neuromuscular junction of the golden hamster (Mesocricetus auratus). Pflügers Arch. ges. Physiol.345, 107–122 (1973)Google Scholar
  8. Moravec, J., Melichar, I., Jánský, L., Vyskočil, F.: Effect of hibernation and noradrenaline on the resting state of neuromuscular junction of golden hamster (Mesocricetus auratus). Pflügers Arch. ges. Physiol.345, 93–106 (1973)Google Scholar
  9. Moravec, J., Vyskočil, F.: Neuromuscular transmission in hibernators. In: Regulation of depressed metabolism and thermogenesis (eds. L. Jánský, X.J. Musacchia), pp. 81–92. Springfield: C.C. Thomas Publ. 1976Google Scholar
  10. Nachlas, M.M., Tsou, K.C., Souza, E., Cheng, C.S., Seligman, A.M.: Cytochemical demonstration of succinic dehydrogenase by the use of a newp-nitrophenyl substituted ditetrazole. J. Histochem. Cytochem.5, 420–436 (1957)Google Scholar
  11. Padykula, H.A., Herman, E.: The specifity of the histochemical method for adenosine triphosphate. J. Histochem. Cytochem.3, 170–195 (1955)Google Scholar
  12. Rohlíček, V.: An automatic analyzer of muscle contraction. SNTL Tech. Dig.61, 383–387 (1968)Google Scholar
  13. Rohlíček, V., Gutmann, E.: The constant of contraction time, a new expression of maximal rate of tension development. Physiol. bohemoslov.21, 430–431 (1972)Google Scholar
  14. Sandow, A., Brust, M.: Contractility of dystrophic mouse muscle. Amer. J. Physiol.194, 557–561 (1958)Google Scholar
  15. South, F.E.: Phrenic nerve-diaphragm preparations in relation to temperature and hibernation. Amer. J. Physiol.200, 565–571 (1961)Google Scholar
  16. Stein, J.M., Padykula, H.A.: Histochemical classification of individual skeletal muscle fibers of the rat. Amer. J. Anat.110, 103–113 (1962)Google Scholar
  17. Tait, J.: The heart of hibernating animals. Amer. J. Physiol.59, 46 (1922)Google Scholar
  18. Takeuchi, T., Kuriaki, M.: Histochemical and electron microscopic differences between native glycogen and polyglucose synthesized by phosphorylase in tissue cells. Acta histochem. cytochem.1, 63–78 (1968)Google Scholar
  19. Vyskočil, F.: Miniature end-plate potentials and sensitivity to acetylcholine in the fast and slow limb muscles of hibernating golden hamsters. Pflügers Arch. ges. Physiol.361, 165–167 (1975)Google Scholar
  20. Vyskočil, F., Moravec, J., Jánský, L.: Resting state of the myoneural junction in a hibernator. Brain Res.34, 381–384 (1971)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • F. Vyskočil
    • 1
  • E. Gutmann
    • 1
  1. 1.Institute of PhysiologyCzechoslovak Academy of SciencesPrague 4-KrčCzechoslovakia

Personalised recommendations