Mechanics of Composite Materials

, Volume 22, Issue 4, pp 479–489 | Cite as

Mixed finite-element method in stress analysis of laminated beams

  • R. B. Rikards
  • A. K. Chate
Article
  • 47 Downloads

Keywords

Stress Analysis Laminate Beam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. V. Bolotin and Yu. N. Novichkov, The Mechanics of Multilayer Structures [in Russian], Moscow (1980).Google Scholar
  2. 2.
    V. G. Piskunov, “The nonclassical theory in problems of the dynamics and statics of laminated shells and plates,” Author's Abstract of Doctoral Thesis, Moscow (1980).Google Scholar
  3. 3.
    A. O. Rasskazov, “Multilayer orthotropic gently curving shells and plates,” Author's Abstract of Doctoral Thesis, Kiev (1978).Google Scholar
  4. 4.
    A. E. Bogdanovich and É. V. Yarve, “Stress analysis of multilayer beams under transverse dynamic bending,” Mekh. Kompozitn. Mater., No. 5, 824–837 (1983).Google Scholar
  5. 5.
    S. T. Mau, P. Tong, and T. H. H. Pian, “Finite element solutions for laminated thick plates,” J. Composite Mater.,6, April, 304–311 (1972).Google Scholar
  6. 6.
    R, L. Spilker, S. C. Chou, and O. Orringer, “Alternate hybrid-stress elements for analysis of multilayer composite plates,” J. Composite Mater.,11, January, 51–70 (1977).Google Scholar
  7. 7.
    R. L. Spilker, “A hybrid-stress finite-element formulation for thick multilayer laminates,” Comput. Structures,11, 507–514 (1980).Google Scholar
  8. 8.
    R. L. Spilker, “Hybrid-stress eight-node element for thin and thick multilayer laminated plates,” Int. J. Numerical Methods Eng.,18, 801–828 (1982).Google Scholar
  9. 9.
    R. L. Spilker and N. I. Munir, “The hybrid-stress model for thin plates,” Int. J. Numerical Methods Eng.,15, 1239–1260 (1980).Google Scholar
  10. 10.
    A. P. Filipovich, “Application of the mixed finite element method to problems of bending of gently curving shells,” Chislennye Metody v Mekhanike Sploshnoi Sredy,13, No. 4, 143–162 (1982).Google Scholar
  11. 11.
    Ya. N. Grigorenko and S. S. Kokoshin, “Numerical analysis of the state of stress of laminated anisotropic shells on the basis of the mixed model of the finite element method,” Prikl. Mekh.,18, No. 2, 3–6 (1982).Google Scholar
  12. 12.
    H. Wada, Y. Taki, T. Takamura, and T. Nishimura, “Nonlinear analysis of plates and shells by the incremental procedure using a mixed model of the finite element method,” Bull. Jpn. Soc. Mech. Eng.,23, No. 186, 1945–1951 (1980).Google Scholar
  13. 13.
    B. Ya. Kantor and L. I. Pupkov, “Construction of finite elements of a gently curving shell on the basis of the variational equation of mixed type,” in: Problems of Engineering, Issue 15, Kiev (1982), pp. 8–13.Google Scholar
  14. 14.
    C. A. Motsa Soares, L. M. Trabucho Campos, and A. F. Viegas Gago, “Dynamic analysis of plates by mixed elements,” in: Recent Advances in Structural Dynamics. Papers of Intern. Conf., Southampton, 1980, Vol. 1, Southampton (1980), pp. 51–60.Google Scholar
  15. 15.
    R. L. Spilker, “Hybrid-stress reduced Mindlin isoparametric elements for the analysis of thin plates,” J. Structural Mech.,11, No. 1, 49–66 (1983).Google Scholar
  16. 16.
    V. A. Postnov and I. Ya. Kharkhurim, The Finite Element Method in Calculations of Ship Structures [in Russian], Leningrad (1974).Google Scholar
  17. 17.
    Archer, “Formulation of matrices for the analysis of structures with the use of the finite element method,” Raket. Tekh. Kosmon.,3, No. 10, 155–166 (1965).Google Scholar
  18. 18.
    R. B. Rikards, “Optimal spatial reinforcement of a rod operating on reliability and vibrations. 1. Finite elements of a Timoshenko beam,” Mekh. Kompozitn. Mater., No. 4, 676–684 (1980).Google Scholar
  19. 19.
    R. B. Rikards, “Optimal spatial reinforcement of a rod operating on reliability and vibrations. 2. Optimization of the structure of the reinforcement,” Mekh. Kompozitn. Mater., No. 6, 1041–1046 (1980).Google Scholar
  20. 20.
    Handbook of Special Functions [in Russian], Moscow (1979).Google Scholar
  21. 21.
    H. J. Pagano, “Exact solutions for composite laminates in cylindrical bending,” J. Composite Mater.,3, 398–411 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • R. B. Rikards
    • 1
  • A. K. Chate
    • 1
  1. 1.A. Ya. Pel'she Riga Polytechnic InstituteLatvia

Personalised recommendations