Mechanics of Composite Materials

, Volume 22, Issue 4, pp 417–421 | Cite as

Numerical method of determining the rheologic parameters of composites from test results

  • D. A. Gavrilov
  • V. A. Markov
Article

Keywords

Rheologic Parameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Yu. N. Rabotnov, Elements of Hereditary Solid-State Mechanics [in Russian], Moscow (1977).Google Scholar
  2. 2.
    G. A. Van Fo Fy, Theory of Reinforced Materials [Russian translation], Kiev (1981).Google Scholar
  3. 3.
    D. A. Gavrilov and V. N. Patsaev, “Method of determining the creep parameters of viscoelastic materials,” Prikl. Mekh.,18, No. 5, 125–127 (1982).Google Scholar
  4. 4.
    E. N. Zvonov, N. I. Malinin, L. Kh. Papernik, and B. M. Tseitlin, “Computer-aided determination of the creep characteristics of linear elastic-hereditary materials,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5, 76–82 (1968).Google Scholar
  5. 5.
    A. M. Skudra and F. Ya. Bulavs, Strength of Reinforced Plastics [in Russian], Moscow (1982).Google Scholar
  6. 6.
    A. N. Zorin and M. I. Rozovskii, “A method of deciphering the irrational function of an intergral operator,” Prikl. Mekh.,1, No. 9, 81–88 (1965).Google Scholar
  7. 7.
    B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Moscow (1984).Google Scholar
  8. 8.
    A. A. Kaminskii, Fracture Mechanics of Viscoelastic Solids [in Russian], Kiev (1980).Google Scholar
  9. 9.
    I. I. Demidova and V. S. Ekel'chik, “Describing polymer rheology using the sum of fractional-exponential functions,” in: Investigations in Elasticity and Plasticity [in Russian], No. 12, Leningrad (1978), pp. 107–113.Google Scholar
  10. 10.
    DMREGF. “Calculation of the real root of a transcendental equation with double precision within the interval of the modified Regule Falsi method,” in: Software for the ES Computer [in Russian], No. 12, Minsk (1977), pp. 74–75.Google Scholar
  11. 11.
    DCLGAM. “Double-precision calculation of gamma-functions,” in: Software for the ES Computer [in Russian], No. 22, Minsk (1980), pp. 55–56.Google Scholar
  12. 12.
    B. D. Annin, “Asymptotic decomposition of an exponential function of fractional order,” Prikl. Mat. Mekh.,25, No. 4, pp. 796–798 (1961).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • D. A. Gavrilov
    • 1
  • V. A. Markov
    • 1
  1. 1.Institute of MechanicsAcademy of Sciences of the Ukrainian SSRKiev

Personalised recommendations