Celestial Mechanics and Dynamical Astronomy

, Volume 58, Issue 1, pp 37–52 | Cite as

The convergence domain of the Laplacian expansion of the disturbing function

  • S. Ferraz-Mello


A computer-assisted reformulation of Sundman's determination of the the domain of absolute convergence of the Laplacian expansion fo the disturbing function is given. Sundman's results are extended to the cases of librating perihelions and a convergence criterion is established for the case of mutually inclined orbits.

Key words

Convergence criteria Sundman's criterion disturbing function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cartan, H.: 1966,Elementare Theorien der Analytischen Funktionen einer oder mehrerer Komplexen Veränderlichen, Bibli. Inst., Mannheim.Google Scholar
  2. Field, M.J.: 1974, ‘Holomorphic function theory and complex manifolds’ inGlobal Analysis and its Applications, vol.I, Intern. Atomic Energy Agency, Vienna, pp. 83–134.Google Scholar
  3. Hagihara, Y.: 1971,Celestial Mechanics, vol. II, part I, M.I.T.Press, Cambridge.Google Scholar
  4. Laskar, J.: 1988, ‘Secular evolution of the Solar system over 10 million years’,Astron. Astrophys 198, 341–362.Google Scholar
  5. Lemaître, A. and Henrard, J.: 1988, ‘The 3/2 resonance’,Celestial Mechanics 43, 91–98.Google Scholar
  6. Murray, C.D.: 1986, ‘Structure of the 2:1 and 3:2 Jovian Resonances’,Icarus 65, 70–82.Google Scholar
  7. Poincaré, H.: 1892,Les Méthodes Nouvelles de la Mécanique Celeste, vol. I, Gauthier-Villars, Paris.Google Scholar
  8. Poincaré, H.: 1898, ‘Développement de la Fonction Perturbatrice’Bull. Astron. 15, 449–464.Google Scholar
  9. Poincaré, H.: 1907,Leçons de Mécanique Celeste, vol. II, Gauthier-Villars, Paris.Google Scholar
  10. Silva, G.: 1909, ‘Sur les limites de convergence du développement de la fonction perturbatrice’Bull. Astron. 26, 49–75 and 97–114.Google Scholar
  11. Sundman, K.F.: 1901,Über die Störungen der Kleinen Planeten, Akad. Abhandl., K.Alexanders Univ., Helsingfors.Google Scholar
  12. Sundman, K.F.: 1916, ‘Sur les conditions nécessaires et suffisantes pour la convergence du développement de la fonction perturbatrice dans le mouvement plan’,Öfversigt Finska Vetenskaps-Soc. Förh. 58 A(24).Google Scholar
  13. Von Zeipel, H.: 1911, ‘Sur les limites de convergence des coefficients du développement de la Fonction Perturbatrice’, Arkiv Matem. Astron. Fysik6 (33).Google Scholar
  14. Wintner, A.: 1941,The analytical foundations of Celestial Mechanics, Princeton Univ. Press, Princeton.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • S. Ferraz-Mello
    • 1
  1. 1.Instituto Astronômico e GeofísicoUniversidade de São PauloSão Paulo, SPBrasil

Personalised recommendations