Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 58, Issue 1, pp 1–16 | Cite as

Global chaoticity in the Pythagorean three-body problem

  • S. J. Aarseth
  • J. P. Anosova
  • V. V. Orlov
  • V. G. Szebehely
Article

Abstract

The effects of small changes in the initial conditions of the Pythagorean three-body problem are investigated by computer simulations. This problem consists of three interacting bodies with masses 3, 4 and 5 placed with zero velocities at the apices of a triangle with sides 3, 4 and 5. The final outcome of this motion is that two bodies form a binary and the third body escapes. We attempt to establish regions of the initial positions which give regular and chaotic motions. The vicinity of a small neighbourhood around the standard initial position of each body defines a regular region. Other regular regions also exist. Inside these regions the parameters of the triple systems describing the final outcome change continuously with the initial positions. Outside the regular regions the variations of the parameters are abrupt when the initial conditions change smoothly. Escape takes place after a close triple approach which is very sensitive to the initial conditions. Time-reversed solutions are employed to ensure reliable numerical results and distinguish between predictable and non-predictable motions. Close triple approaches often result in non-predictability, even when using regularization; this introduces fundamental difficulties in establishing chaotic regions.

Key words

Three-body problem chaotic motions regularization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarseth, S. J. and Zare, K.: 1974,Celes. Mech. 10, 185.Google Scholar
  2. Aarseth, S. J.: 1976, InLong-Time Predictions in Dynamics, V. Szebehely and B. Tapley (eds.), D. Reidel Publ. Co. Dordrecht, Holland, p. 173.Google Scholar
  3. Agekian, T. A. and Anosova, J. P.: 1967,Sov. Astron. Zh. 44, 1261.Google Scholar
  4. Agekian, T. A. and Anosova, J. P.: 1977,Trans. Astron. Obs. Leningrad State Univ. 33, 52.Google Scholar
  5. Agekian, T. A. and Anosova, J. P.: 1991,Sov. Astron. Zh. 68, 1099.Google Scholar
  6. Anosova, J. P.: 1969,Trans. Astron. Obs. Leningrad State Univ. 26, 88.Google Scholar
  7. Anosova, J. P.: 1986,Astrophys. Space Sci. 124, 217.Google Scholar
  8. Anosova, J. P.: 1990,Celes. Mech. Dyn. Astron. 48, 357.Google Scholar
  9. Anosova, J. P.: 1991,Celes. Mech. Dyn. Astron. 51, 1.Google Scholar
  10. Anosova, J. P. and Orlov, V. V.: 1985,Trans. Astron. Obs. Leningrad State Univ. 40, 66.Google Scholar
  11. Anosova, J. P. and Zavalov, N. N.: 1981,Trans. Astron. Obs. Leningrad State Univ. 36, 109.Google Scholar
  12. Anosova, J. P. and Zavalov, N. N.: 1989,Sov. Astron. Zh. 66, 152.Google Scholar
  13. Bulirsch, R. and Stoer, J.: 1966,Numer. Math. 8, 1.Google Scholar
  14. Burrau, C., 1913.Astron. Nachr. 195, 113.Google Scholar
  15. Dejonghe, H. and Hut, P.: 1986, InThe Use of Supercomputers in Stellar Dynamics, P. Hut and S. McMillan (eds.), Springer-Verlag, p. 212.Google Scholar
  16. Johnstone, D. and Rucinski, M.: 1991,Publ. Astron. Soc. Pacif. 103, 359.Google Scholar
  17. Meissel, X.: 1893 (private communication to Burreau).Google Scholar
  18. Monaghan, J. J.: 1976,Mon. Not. Roy. Astr. Soc. 176, 63.Google Scholar
  19. Prigogine, I. and Stengers, I.: 1984,Order out of Chaos. Bantam Books.Google Scholar
  20. Standish, E. M.: 1971,Celes. Mech. 4, 44.Google Scholar
  21. Standish, E. M.: 1976,Celes. Mech. 14, 493.Google Scholar
  22. Szebehely, V.: 1973,Astron. Astrophys. 22, 171.Google Scholar
  23. Szebehely, V. and Peters, C.F.: 1967,Astron. J. 72, 876.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • S. J. Aarseth
    • 1
  • J. P. Anosova
    • 2
  • V. V. Orlov
    • 2
  • V. G. Szebehely
    • 3
  1. 1.Institute of AstronomyUniversity of CambridgeCambridgeEngland
  2. 2.Astronomical ObservatorySt. Petersburg UniversitySt. Petersburg, PetrodvoretsRussia
  3. 3.Department of Aerospace Engineering and Engineering MechanicsUniversity of Texas at AustinAustinU.S.A.

Personalised recommendations