Skip to main content
Log in

Modeling of high-pressure 12-μm NH3 lasers

  • Contributed Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Experimental measurements of small-signal gain in an optically-pumped NH3 amplifier are carried out at pressures ranging from 40 Torr to 760 Torr, and the results are used to validate a rate-equation model describing the amplifier dynamics. The gain measurements show that dilute mixtures of <0.5% NH3 in N2 are reqired to minimize the problems of gas heating due to pump absorption. The model is used to extrapolate the results to gas pressures of several atmospheres, and to demonstrate the potential for highpressure operation of optically-pumped NH3 lasers. For a pump intensity of 100 MW/cm2, calculations indicate that operation of an NH3−N2 laser is feasible up to a pressure of 10 atm, which would provide a maximum continuous tuning range of 4 cm−1. High-resolution spectroscopy reveals that gain on a few NH3 transitions is eliminated at high pressures due to the presence of overlapping absorptions in other NH3 bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.I. Vasil'ev, A.Z. Grasyuk, A.P. Dyad'kin, A.N. Sukhanov, A.B. Yastrebkov: Sov. J. QE-10, 64–68 (1980)

    Google Scholar 

  2. H. Tashiro, K. Suzuki, K. Toyoda, S. Namba: Appl. Phys.21, 237–240 (1980)

    Google Scholar 

  3. M. Akhrarov, B.I. Vasil'ev, A.Z. Grasyuk, A.B. Yastrebkov: Sov. J. QE-12, 1326–1329 (1982)

    Google Scholar 

  4. M. Akhrarov, B.I. Vasil'ev, A.Z. Grasyuk, A.B. Yastrebkov, Sov. J. QE-13, 357–361 (1983)

    Google Scholar 

  5. H. Tashiro, T. Koizumi, K. Toyoda, S. Namba: Opt. Lett.9, 279–281 (1984)

    Google Scholar 

  6. Š. Urban, D. Papoušek, J. Kauppinen, K. Yamada, G. Winnewisser: J. Mol.Spectrosc.101, 1–15 (1983)

    Google Scholar 

  7. M. Akhrarov, B.I. Vasil'ev, A.Z. Grasyuk, A.B. Yastrebkov: Sov. J. QE-12, 405–408 (1982)

    Google Scholar 

  8. E.D. Shaw, C.K.N. Patel: Opt. Commun.27, 419–422 (1978). This study and [9] report results on directly-pumped transitions in pressures of 5–30 Torr of pure NH3. Thus, the gain bandwidth is due to ac Stark shifts and the bandwidth of the pump source through the Raman process, and not due to pressure broadening. This result does not detract from the general applicability of synchronous pumping to the conditions examined in this paper

    Google Scholar 

  9. B.K. Deka, P.E. Dyer, I.K. Perera: Opt. Commun.37, 127–132 (1981)

    Google Scholar 

  10. H.D. Morrison, B.K. Garside, J. Reid: IEEE J. QE-20, 1051–1060 (1984)

    Google Scholar 

  11. H.D. Morrison, B.K. Garside, J. Reid: J. Opt. Soc. Am. B (in press)

  12. C. Rolland, J. Reid, B.K. Garside: IEEE J. QE-18, 182–186 (1982)

    Google Scholar 

  13. P. Minguzzi, M. Tonelli, A. Carrozzi, A. Di Lieto: J. Mol. Spectrosc.96, 294–305 (1982)

    Google Scholar 

  14. C. Rolland, J. Reid, B.K. Garside: Appl. Phys. Lett.44, 380–382 (1984)

    Google Scholar 

  15. S.-T. Wu, M. Bass: Appl. Phys. Lett.39, 948–950 (1981)

    Google Scholar 

  16. For the present calculations, the temperature dependence of the NH3 V-T rate was defined by a decaying-exponential fit to the data listed by F.E. Hovis, C.B. Moore: J. Chem.Phys.72, 2397–2402 (1980)

    Google Scholar 

  17. J.P. Sattler, L.S. Miller, T.L. Worchesky: J. Mol. Spectrosc.88, 347–351 (1981)

    Google Scholar 

  18. D.E. Jennings: Appl. Opt.19, 2695–2700 (1980)

    Google Scholar 

  19. D.T. Cassidy, J. Reid: Appl. Opt.21, 2527–2530 (1982)

    Google Scholar 

  20. Š. Urban, V. Špirko, D. Papoušek, R.S. McDowell, N.G. Nereson, S.P. Belov, L.I. Gershstein, A.V. Maslovskij, A.F. Krupnov, J. Curtis, K.N. Rao: J. Mol. Spectrosc.79, 455–495 (1980)

    Google Scholar 

  21. H. Sasada, Y. Hasegawa, T. Amano, T. Shimizu: J. Mol. Spectrosc.96, 106–130 (1982)

    Google Scholar 

  22. G. Baldacchini, S. Marchetti, V. Montelatici, M. Di Lonardo, R.P. Leavitt, J.P. Sattler: J. Mol.Spectrosc.95, 30–34 (1982)

    Google Scholar 

  23. There is an overall decrease in the gain coefficients at the higher pressure due to the increase in the relaxation rates relative to the pumping rate which reduces the population inversion. Less effective pumping is more noticeable on theQ andR transitions, as they are more sensitive to changes in the population inversion

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, H.D., Garside, B.K. & Reid, J. Modeling of high-pressure 12-μm NH3 lasers. Appl. Phys. B 37, 165–170 (1985). https://doi.org/10.1007/BF00692080

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00692080

PACS

Navigation