Applied Physics B

, Volume 37, Issue 3, pp 115–135 | Cite as

Mass spectrometry of arcs in SF6 circuit breakers

  • W. Rüegsegger
  • R. Meier
  • F. K. Kneubühl
  • H. J. Schötzau
Invited Paper


Today, SF6 is used to a great extent as insulating and arc-quenching medium in high-voltage gas-blast circuit breakers. The arcing in SF6 during current interruption forms decomposition products. These can influence the arc-quenching properties of the circuit breaker. Furthermore, they can cause corrosion of the circuit breaker housing. In this comprehensive study we present results obtained for the first time from a direct mass spectrometric investigation of the exhaust gases of a high pressure SF6 arc in a model circuit breaker. Our mass spectrometric system consists of a time-of-flight mass spectrometer (TOFMS) equipped with a molecular beam sampling systems. This device allows us to measure mass spectra of high pressure sources with a time resolution of up to 10,000 spectra per second. We have determined the formation rate of the most abundant decomposition products in a SF6 arc at 1 bar. These products are SF4, CF4, WF6, SOF2, SO2, CS2 S2F2 and HF. The fast detection time inherent to our system permits also the determination of the formation of SF4, which is 0.45–0.50 Vol. %/(kJ/1SF6). In addition, we have studied the influence of water and oxygen impurities which are responsible for the production of highly corrosive HF. Finally, we have considered the influence of the thermal degradation of teflon (P.T.F.E.), which is used as nozzle and insulating material in circuit breakers. On this occasion we have demonstrated that CF4, which exhibits dielectric properties similar to SF6, is the main decomposition product formed from teflon. However, we have found that besides CF4 also excess carbon is formed, which is deposited on insulators of the model circuit breaker.

Our time-resolved mass spectra reveal that the CF4 production from teflon is delayed by a few milliseconds with respect to the SF6 dissociation in the arc. This delay can influence the interrupting process of the circuit breaker by changing the plasma composition during the arcing period. Although our experiments have been performed on a model circuit breaker we claim that the results presented in this study can be applied to real circuit breakers, since the arc current density and the energy dissipated per liter SF6 are of the same order of magnitude in both devices.


52.70-m 52.75.Kq 52.80.Mg 07.75+h 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Swarbrick: Brit. J. Appl. Phys.18, 419 (1967)Google Scholar
  2. 2.
    E. Schulz-Gulde: J. Phys. D13, 793 (1980)Google Scholar
  3. 3.
    K.P. Brand, J. Kopainsky: Appl. Phys.16, 425 (1978)Google Scholar
  4. 4.
    K. Ragaller, W. Egli, K.P. Brand: IEEE Trans. PS10, 154 (1982)Google Scholar
  5. 5.
    H.J. Schötzau, H.P. Meili, E. Fischer, Ch. Sturzenegger, H.P. Graf: IEEE PES SM 647-4 (1984)Google Scholar
  6. 6.
    H.P. Graf, H.P. Meili, E. Fischer, H.J. Schötzau: Appl. Phys. B36, 33–40 (1984)Google Scholar
  7. 7.
    H.J. Schötzau, H.P. Graf, H.P. Meili, Ch. Sturzenegger, W. Rüegsegger: HPA56, 955 (1983)Google Scholar
  8. 8.
    K.P. Brand, W. Egli, L. Niemeyer, K. Ragaller, E. Schade: IEEE Trans. PS10, 162 (1982)Google Scholar
  9. 9.
    W. Frie: Z. Physik201, 269 (1967)Google Scholar
  10. 10.
    W. Becher, J. Massonne: Elektrotech. ZA91, 605 (1970)Google Scholar
  11. 11.
    C. Boudene, J.L. Cluet, G. Keib, G. Wind: Rev. Gen. Electr. special issue (June 1974)Google Scholar
  12. 12.
    T. Miyamoto, A. Kamatani: Mitsubishi Denki Lab. Rep.6, 175 (1964)Google Scholar
  13. 13.
    K. Hirooka, H. Kuwahara, M. Noshiro, Y. Jitsugiri: Electr. Eng. Japan95, 14 (1975)Google Scholar
  14. 14.
    G. Bruno, P. Capezzuto, F. Cramarossa: J. Fluorine Chem.14, 115 (1979)Google Scholar
  15. 15.
    J. Castonguay:Conf. Rec. IEEE Intern. Symp. Electr. Insul., Boston (June 1980)Google Scholar
  16. 16.
    T. Suzuki, S. Nakayama, T. Yoshimitsu: IEEE Trans. EI15, 53 (1980)Google Scholar
  17. 17.
    J.P. Manion, J.A. Philosophos, M.B. Robinson: IEEE Trans. EI2, 1 (1967)Google Scholar
  18. 18.
    P.G. Asbaugh, D.W. McAdam, M.F. James: IEEE Trans. NS12, 266 (1965)Google Scholar
  19. 19.
    V.H. Tahiliani, K.B. Miners, W.J. Lannes:Intern. Conf. Large High Voltage Electr. Syst., cigre report 23-08 (Paris 1984)Google Scholar
  20. 20.
    L.C. Frees, I. Sauers, H.W. Ellis, L.G. Christophorou: J. Phys. D14, 1629 (1981)Google Scholar
  21. 21.
    I. Sauers, H.W. Ellis, L.C. Frees, L.G. Christophorou: InGaseous Dielectrics 3, Proc. 3rd Intern. Symp. Gaseous Dielectrics (Pergamon, New York 1982) pp. 387–401Google Scholar
  22. 22.
    I. Sauers, L.G. Christophorou:Proc. 7th Intern. Gas Discharge, London (Aug. 1982)Google Scholar
  23. 23.
    Y. Nakagawa, M. Tsukuski, K. Hirasawa, Y. Yoshioka: EPRI Rep. EL 3293, App. 0 (Dec. 1983)Google Scholar
  24. 24.
    Ch. Sturzenegger, R. Reinhardt, H.J. Schötzau: SEV/VSE Bulletin71, 1154 (1980)Google Scholar
  25. 25.
    H.M. Parker, A.R. Kuhltau, R. Zapata: InRarefied Gas Dynamics, Proc. First Intern. Symp., ed. by F.M. Devienne (Pergamon, London 1960) pp. 66–79Google Scholar
  26. 26.
    A. Kantrowitz, J. Grey: Rev. Sci. Instr.22, 328 (1951)Google Scholar
  27. 27.
    J.W. Cornelisse, H.F.R. Schöyer, K.F. Wacker: InRocket Propulsion and Spaceflight Dynamics (Pitman Publ., London 1979) pp. 85–149Google Scholar
  28. 28.
    H. Ashkenas, F.S. Sherman: InRarefied Gas Dynamics, Proc. of 4th Intern. Symp., ed. by H. DeLeeuw (Academic, London 1963) pp. 84–105Google Scholar
  29. 29.
    C.A. Stearns et al.:NBS Special Publications 561, Proc. 10th Materials Res. Symp., Gaithersburg, Maryland (1978)Google Scholar
  30. 30.
    J.B. Anderson, J.B. Fenn: Phys. Fluids8, 780 (1965)Google Scholar
  31. 31.
    O.F. Hagena, W. Obert: J. Chem. Phys.56, 1793 (1972)Google Scholar
  32. 32.
    A.E. Beylich:rarefied Gas Dynamics, Proc. of 9th Intern. Symp., ed. by M. Becker, M. Fiebig (DFVLR Press 1974) pp. 5.1–5.10Google Scholar
  33. 33.
    R.L. LeRoy, T.F. Govers, J.M. Deckers: Can. J. Chem.48, 927 (1970)Google Scholar
  34. 34.
    K. Bier, O. Hagena: InRarefied Gas Dynamics, Proc. of 3rd Intern. Symp., ed. by J.A. Laurmann (Academic, London 1963) pp. 260–278Google Scholar
  35. 35.
    P. Coxon, G. Canadas: Int. J. Mass. Spec. Ion Phys.37, 177 (1981)Google Scholar
  36. 36.
    P.C. Watermann, S.A. Stern: J. Chem. Phys.31, 405 (1959)Google Scholar
  37. 37.
    V.H. Reis, J.B. Fenn: J. Chem. Phys.39, 3240 (1963)Google Scholar
  38. 38.
    P.K. Sharma, E.L. Knuth, W.S. Young: J. Chem. Phys.64, 4345 (1976)Google Scholar
  39. 39.
    A.N. Hayhurst, N.R. Telford: Proc. R. Soc. Lond.322A, 483 (1976)Google Scholar
  40. 40.
    J.C. Biordi, C.P. Lazzara, J.F. Papp: Combust. Flame23, 73 (1974)Google Scholar
  41. 41.
    J.B. French: AIAA J.3, 993 (1965)Google Scholar
  42. 42.
    U. Bossel, F.C. Hurlburt, F.S. Sherman:Rarefied Gas Dynamics, Proc. 6th Intern. Symp. (1969)Google Scholar
  43. 43.
    T.A. Milne, J.E. Beachey, F.T. Greene: J. Chem. Phys.56, 3007 (1972)Google Scholar
  44. 44.
    T.A. Milne, F.T. Greene: J. Chem. Phys.47, 4095 (1967)Google Scholar
  45. 45.
    G.J. Williams, R.G. Wilkins: Combust. Flame21, 325 (1973)Google Scholar
  46. 46.
    W.J. McLean: PhD Thesis, Report TS-71-7, Univ. of Calif. (Berkeley 1971)Google Scholar
  47. 47.
    W. Rüegsegger, H.J. Schötzau, F.K. Kneubühl: Appl. Phys. B31, 9 (1983)Google Scholar
  48. 48.
    W. Rüegsegger, R. Meier, H.J. Schötzau, F.K. Kneubühl: HPA57, 521 (1984)Google Scholar
  49. 49.
    W. Rüegsegger, H.J. Schötzau, F.K. Kneubühl: HPA55, 587 (1982)Google Scholar
  50. 50.
    C. B. Ruchti, F. Pinnekamp, BBC Research Center, Baden, Switzerland: Private communication (1984)Google Scholar
  51. 51.
    EPRI Report EL 2620 (Sept. 1982)Google Scholar
  52. 52.
    W. Tiemann. IEEE Trans. PS8, 368 (1980)Google Scholar
  53. 53.
    H.P. Graf, H.P. Meili, H.J. Schötzau, Ch. Sturzenegger: HPA55, 590 (1982)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • W. Rüegsegger
    • 1
  • R. Meier
    • 1
  • F. K. Kneubühl
    • 1
  • H. J. Schötzau
    • 2
  1. 1.Physics DepartmentETHZürichSwitzerland
  2. 2.Physics and Chemistry DepartmentSprecher & Schuh Ltd.AarauSwitzerland

Personalised recommendations