Skip to main content
Log in

Hamiltonian perturbation theory on a manifold

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper deals with Hamiltonian perturbation theory for systems which, like Euler-Poinsot (the rigid body with a fixed point and no torques), are degenerate and do not possess a global system of action-angle coordinates. It turns out that the usual methods of perturbation theory, which are essentially ‘local’ being based on the construction of normal forms within the domain of a local coordinate system, are not immediately usable to study perturbations of these systems, since degeneracy makes impossible to control that the system does not fall into a singularity of the coordinates. To overcome this difficulty, we develop a ‘global’ formulation of Hamiltonian perturbation theory, in which the normal forms are globally defined on the phase space manifold. The key for this study lies in the geometry of the fibration by the invariant tori of an integrable degenerate Hamiltonian system, which is described by some generalizations of the Liouville-Arnol'd theorem and is reviewed in the paper. As an application, we provide a ‘global’ formulation of Nekhoroshev's theorem on the stability for exponentially long times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.N. Nekhoroshev, 1972: ‘Action-angle variables and their generalizations’.Trudy Moskov. Mat. Obsc. 26, 181–198 [Trans. Moskow Math. Soc. 26, 180–198 (1972)].

    Google Scholar 

  2. J.J. Duistermaat, 1980: ‘On global action-angle coordinates’.Commun. Pure Appl. Math. 33, 687–706.

    Google Scholar 

  3. P. Dazord and T. Delzant, 1987: ‘Le probleme general des variables actions-angles’.J. Diff. Geom. 26, 223–251.

    Google Scholar 

  4. A.T. Fomenko, 1988:Integrability and nonintegrability in geometry and mechanics (Kluwer, Dordrecht).

    Google Scholar 

  5. M.V. Karasaev and V.P. Maslov, 1993:Nonlinear Possion Brackets. Geometry and Quantization. Translations of the AMS, Volume 119 (AMS, Providence, Rhode Island).

    Google Scholar 

  6. R. Cushman, 1983: ‘Geometry of the energy momentum mapping of the spherical pendulum’.Centrum voor Wiskunde en Informatica Newsletter 1, 4–18.

    Google Scholar 

  7. R. Cushman and H. Knörrer, 1985:The energy-momentum mapping of the Lagrange top, inDifferential geometric methods in mathematical physics, H.D. Doebner and J.D. Henning editors,Lect. Notes Math. No. 1139 (Springer Verlag, Berlin).

    Google Scholar 

  8. J. Moser, 1970: ‘Regularization of Kepler's problem and the averaging method on a manifold’.Commun. Pure Appl. Math. 23, 609–636.

    Google Scholar 

  9. S.L. Coffey, A. Deprit and B.R. Miller, 1986: ‘The critical inclination in artificial satellite theory’.Celestial Mechanics 39, 365–406.

    Google Scholar 

  10. F. Fassò, 1994: ‘On the Geometry of the Euler-Poinsot system’. Preprint.

  11. V.I. Arnold, 1963: ‘Small denominators and problems of stability of motion in classical and celestial mechanics’,Usp. Mat. Nauk 18:6, 91–192 [Russ. Math. Surv. 18:6, 85–191 (1963)].

    Google Scholar 

  12. V.I. Arnold, V.V. Kozlov and A.I. Neishtadt, 1988:Mathematical aspects of classical and celestial mechanics, inDynamical system III, Volume 3 ofEncyclopedia of Mathematical Sciences, V.I. Arnold editor (Springer-Verlag, Berlin).

    Google Scholar 

  13. N.N. Nekhoroshev, 1977: ‘An exponential estimate of the time of stability of nearly integrable Hamiltonian systems’.Usp. Mat. Nauk 32:6, 5–66 [Russ. Math. Surv. 32:6, 1–65 (1977)].

    Google Scholar 

  14. G. Benettin and G. Gallavotti, 1986: ‘Stability of motions near resonances in quasi-integrable Hamiltonian systems’.J. Stat. Phys. 44, 293–338.

    Google Scholar 

  15. J. Pöschel, 1993: ‘Nekhoroshev estimates for quasi-convex Hamiltonian Systems’,Math. Z. 213, 187–216.

    Google Scholar 

  16. F. Fassò, 1991:Fast rotations of the rigid body and Hamiltonian perturbation theory. Ph.D. thesis, SISSA, Trieste.

  17. G. Benettin and F. Fassò, 1994: ‘Fast rotations of the symmetric rigid body: A study by Hamiltonian perturbation theory’. Preprint.

  18. R. Cushman, 1984:Normal Form for Hamiltonian Vectorfields with Periodic Flow, inDifferential Geometric Methods in Mathematical Physics, S. Sternberg editor, 125–144 (Reidel, Dordrecht).

    Google Scholar 

  19. J. Henrard, 1974: ‘Virtual singularities in the artificial satellite theory’.Celestial Mechanics 10, 437.

    Google Scholar 

  20. F. Fassò, 1994:Perturbation theory for systems without global action-angle coordinates, inHamiltonian Mechanics: Integrability and Chaotic Behaviour, J. Seimenis editor, 113–120 (Plenum, New York).

    Google Scholar 

  21. L.M. Bates, 1991: ‘Monodromy in the champagne bottle’.J. Appl. Math. Phys. (ZAMP)42, 837–847.

    Google Scholar 

  22. L.M. Bates, 1988: ‘Examples for obstructions to action-angle coordinates’.Proc. Roy. Soc. Edinburgh 110A, 27–30.

    Google Scholar 

  23. J.A. Serret, 1866: Mémoire sur l'emploi de la méthode de la variation des arbitraires dans la théorie des mouvements des rotation. Mémoires de l'Académie des Sciences de Paris,35, 585–616.

    Google Scholar 

  24. H. Andoyer, 1923:Cours de Mécanique Céleste (Gauthier-Villars, Paris).

    Google Scholar 

  25. A. Deprit, 1967: ‘Free rotation of a rigid body studied in phase plane’.Am. J. Phys. 55, 424–428.

    Google Scholar 

  26. F. Boigey, 1971: ‘Une transformation canonique de Mathieu dans l'espace des phases du mouvement d'un solid mobile autour d'un point fixe’.C. R. Acad. Sc., Ser A 272, 1115–1118.

    Google Scholar 

  27. F. Boigey, 1972: ‘Une théorie des perturbations en variable angles-actions. Application au mouvement d'un solide autour d'un point fixe. Précession-nutation’.J. de Méc. 11, 521–543.

    Google Scholar 

  28. V.I. Arnold, 1980:Chapitres supplémentaires de la théorie des équations différentielles ordinaires (MIR, Moscow).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fassò, F. Hamiltonian perturbation theory on a manifold. Celestial Mech Dyn Astr 62, 43–69 (1995). https://doi.org/10.1007/BF00692068

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00692068

Key words

Navigation