Acta Neuropathologica

, Volume 37, Issue 2, pp 95–100 | Cite as

Ultrastructural and biochemical studies on ouabain-induced oedematous brain

  • Ryuichi Tanaka
  • Kenichi Tanimura
  • Komei Ueki
Original Investigations

Summary

Ouabain, a specific inhibitor of active cation transport across cell membrane, was applied topically to brain surface of cats. The cerebral cortex to which 10−3 M ouabain was applied showed a spongy state, which was ultrastructurally revealed to be swelling of the neuronal cell processes, especially of dendrites. Astrocytes did not show swelling even in the most severely affected lesions. There was a marked increase in sodium with a slight increase of water in the most severely affected lesions. There was a marked increase in sodium with a slight increase of water in the cortex treated with 10−3 M ouabain. No evidence of increased vascular permeability was noted in the cortex, morphologically or biochemically. Electron microscopic cytochemistry to detect the sodium ion revealed that the increased sodium in the cortex accumulated in the swollen neuronal cell processes.

It is speculated that neuronal rather than astrocytic elements might be highly dependent upon active cation transport, and that intracellular oedema in the brain tissue responsible for impairment of active cation transport might be related primarily to neuronal elements.

Key words

Brain oedema Ouabain Na-K-ATPase Na-ion Electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayala, G. F., Lin, S., Vascontetto, C.: Penicillin as epileptogenic agent: Its effect on an isolated neuron. Science167, 1257 (1970)Google Scholar
  2. Bakay, L., Lee, J. C.: The effect of acute hypoxia and hypercapnia on the ultrastructure of the central nervous system. Brain91, 697–706 (1968)Google Scholar
  3. Cornog, G. L., Gonatas, N. K., Feierman, J. R.: Effects of intracerebral injection of ouabain on the fine structure of rat cerebral cortex. Amer. J. Path.51, 573–590 (1967)Google Scholar
  4. Cummins, J., Hydén, H.: Adenosine triphosphate levels and adenosine triphosphatases in neurons, glia and neuronal membranes of the vestibular nucleus. Biochim. biophys. Acta (Amst.)60, 271–283 (1962)Google Scholar
  5. Davis, B. J.: Disc electrophoresis. II. Method and application on human serum protein. Ann. N.Y. Acad. Sci.121, 404–427 (1964)Google Scholar
  6. Elliot, K. A. C., Jasper, H.: Measurement of experimentally induced brain swelling and shrinkage. Amer. J. Physiol.157, 122–129 (1949)Google Scholar
  7. Hartmann, J. F.: High sodium content of cortical astrocytes. Arch. Neurol. (Chic.)15, 633–642 (1966)Google Scholar
  8. Hess, H. H., Pope, A.: Effects of metal cations on adenosine triphosphatase activity of rat brain. Fed. Proc.16, 196 (1957)Google Scholar
  9. Hess, H. H., Schneider, G., Warnock, M., Pope, A.: Lack of effect of Na plus K on Mg-stimulated ATP phosphohydrolase activity of human astrocytomas. Fed. Proc.22, 333 (1963)Google Scholar
  10. Hirano, A., Levin, S., Zimmerman, H. M.: Experimental cyanide encephalopathy: Electron microscopic observations of early lesions in white matter. J. Neuropath. exp. Neurol.26, 200–213 (1967)Google Scholar
  11. Ishii, S.: Brain swelling. Studies of structural, physiological and biochemical alterations. In: Head Injury (eds. W. F. Caveness, A. E. Walker), pp. 276–299. Philadelphia-Toronto: Lippincott Co. 1966Google Scholar
  12. Katzman, R.: Electrolyte distribution in mammalian central nervous system. Are glia high sodium cells? Neurology (Minneap.)11, 27–36 (1961)Google Scholar
  13. Klatzo, I.: Neuropathological aspects of brain edema. J. Neuropath. exp. Neurol.26, 1–14 (1967)Google Scholar
  14. Komnick, H.: Elektronenmikroskopische Lokalisation von Na+ und Cl in Zellen und Geweben. Protoplasma (Wien)55, 414–418 (1962)Google Scholar
  15. Krigman, M. R., Buck, E. L.: Ouabain encephalopathy: A temporal study of histological, electrolyte, and Na−K stimulated adenosine triphosphatase changes. J. Neuropath. exp. Neurol.29, 151–152 (1970)Google Scholar
  16. Levin, E., Hess, H. H.: Intralaminar distribution of Na-K-adenosine triphosphatase in rat cortex. J. Neurochem.11, 473–481 (1964)Google Scholar
  17. Millonig, G.: Advantages of a phosphate buffer for osmium tetroxide solution in fixation. J. appl. Physiol.32, 1637 (1961)Google Scholar
  18. Miyagishi, T., Suwa, N.: Electron microscopic studies on the cerebral lesions of rats in experimental carbon-monoxide poisoning. Acta neuropath. (Berl.)14, 118–125 (1969)Google Scholar
  19. Okada, K., Ayala, G. F., Sung, J. H.: Ultrastructure of penicillin-induced epileptogenic lesion of the cerebral cortex in cats. J. Neuropath. exp. Neurol.30, 337–353 (1971)Google Scholar
  20. Ornstein, L.: Disc electrophoresis. I. Background and theory. Ann. N.Y. Acad. Sci.121, 321–349 (1964)Google Scholar
  21. Ozawa, K., Itada, N., Kuno, S., Handa, H., Araki, C.: Biochemical studies on brain swelling. I. Changes in respiratory control, 2,4-dinitrophenol-induced ATPase activity and phosphorylation. Correlation between brain swelling and mitochondrial function. Folia psychiat. neurol. jap.20, 57–72 (1966)Google Scholar
  22. Post, R. L.: Relationship of an ATPase in human erythrocyte membranes to the active transport of sodium and potassium. Fed. Proc.18, 121 (1959)Google Scholar
  23. Reulen, H. J., Baethmann, A.: Das Dinitrophenol-Ödem. Ein Modell zur Pathophysiologie des Hirnödems. Klin. Wschr.45, 149–154 (1967)Google Scholar
  24. Skou, J. C.: The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. biophys. Acta (Amst.)23, 394–401 (1957)Google Scholar
  25. Solheid, C., Palladini, G.: Morphological changes induced by ouabain in normal and neoplastic human glia in monolayer culture. Acta neuropath. (Berl.)28, 253–260 (1974)Google Scholar
  26. Tanimura, K.: Biochemical study of brain edema. III. Effects of Na-K-activated ATPase inhibitor on cat's cerebral cortex in vivo. Brain Nerve21, 467–474 (1969)Google Scholar
  27. Towfighi, J., Gonatas, N. K.: Effect of intracerebral injection of ouabain in adult and developing rats. An ultrastructural and autoradiographic study. Lab. Invest.28, 170–180 (1973)Google Scholar
  28. Wolff, J. R., Schieweck, Ch., Emmenegger, H., Meier-Ruge, W.: Cerebrovascular ultrastructural alterations after intra-arterial infusions of ouabain, scilla-glycosides, heparin and histamine. Acta neuropath. (Berl.)31, 45–58 (1975)Google Scholar
  29. Zadunaisky, J. A., Wald, F., DeRobertis, E. D. P.: Osmotic behavior and ultrastructural modifications in isolated frog brains. Exp. Neurol.8, 290–309 (1963)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Ryuichi Tanaka
    • 1
  • Kenichi Tanimura
    • 1
  • Komei Ueki
    • 1
  1. 1.Department of Neurosurgery, Brain Research InstituteNiigata UniversityNiigataJapan

Personalised recommendations