Skip to main content
Log in

Vortex dynamics at the superfluid λ-transition

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A vortex-ring theory of the superfluid4He λ-transition is extended to include the dynamics of the transition. The response of the vortices to an oscillating superflow is found by solving the Fokker-Planck equation. This allows a calculation of the superfluid relaxation time, which is in agreement with Landau-Khalatnikov theory and with dynamic scaling. At high frequencies the transition becomes broadened, with both the superfluid density and the dissipation remaining finite at and above Tλ. Comparison is made to earlier theories that use high-temperature expansions and renormalization-group expansions. Applications to other subjects such as mutual friction, high-Tc superconductors, and rapidly quenched systems are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wilks,The Properties of Liquid and Solid Helium, (Clarendon Press, Oxford, 1967) Chap. 5.

    Google Scholar 

  2. J. S. Brooks and R. J. Donnelly, J. Phys. Chem. Ref. Data6, 51 (1977).

    Google Scholar 

  3. A. Singsass and G. Ahlers, Phys. Rev. B30, 5103 (1984).

    Google Scholar 

  4. K. Wilson, Rev. Mod Phys.49, 773 (1975); M. E. Fisher, ibid, 46, 97 (1974).

    Google Scholar 

  5. G. A Williams, Phys. Rev. Lett.59, 1926 (1987);61, 1142(E);

    Google Scholar 

  6. S. R. Shenoy, Phys. Rev. B40, 5056 (1989); ibidB42, 8595 (1990).

    Google Scholar 

  7. G. A. Williams, inExcitations in Two-Dimensional and Three-Dimensional Quantum Fluids, eds. A.F.G. Wyatt and H. Lauter, (Plenum Press, New York, 1991), p. 311.

    Google Scholar 

  8. G. A. Williams, Phys. Rev. Lett.68, 2054 (1992);68, 2976 (E) (1992).

    Google Scholar 

  9. G. A. Williams, J. Low Temp Phys.89, 91 (1992).

    Google Scholar 

  10. B. Chattopadhyay, M.C. Mahato, and S.R. Shenoy, Phys. Rev. B47, 5159 (1993).

    Google Scholar 

  11. O. Deitrich, E. Graf, C. Huang, and L. Passell, Phys. Rev.A5, 1377 (1972); K.Ohbayashi, M.Udagawa, H. Yamoshita, M. Watabe, and N. Ogita, Physica B165&166, 485 (1990).

    Google Scholar 

  12. L. Onsager, Nuovo Cimento Suppl.6, 249 (1949); R.P.Feynman, inProgress in Low Temperature Physics, ed. C.J. Gorter, (North-Holland, Amsterdam, 1955), Vol.1, p.52.

    Google Scholar 

  13. J.M. Kosterlitz and D. J. Thouless, J. Phys.C6, 1181 (1973).

    Google Scholar 

  14. G. A. Williams, Phys. Rev. Lett.71, 392 (1993).

    Google Scholar 

  15. V. Ambegaokar, B.I. Halperin, D.R. Nelson, and E.D. Siggia, Phys. Rev. B21, 1806 (1980); S. Teitel and V. Ambegaokar, Phys. Rev. B19, 1667 (1979).

    Google Scholar 

  16. A. Chorin, J. Stat. Phys.69, 67 (1992).

    Google Scholar 

  17. R. Kamien, J. Phys. I (Paris)3, 1663 (1993).

    Google Scholar 

  18. G. Kohring, R. Shrock, and P. Wills, Phys. Rev. Lett.57, 1358 (1986).

    Google Scholar 

  19. J. Epiney, Diploma thesis, ETH Zurich, 1990 (unpublished).

  20. Y. Li and S. Teitel, Phys. Rev. B40, 9122 (1989); W. Janke, Phys. Lett. A148, 306 (1990).

    Google Scholar 

  21. G.A. Williams, Physica B165&166, 769 (1990).

    Google Scholar 

  22. J.C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett.39, 95 (1977).

    Google Scholar 

  23. N. Madras and A.D. Sokal, J. Stat. Phys.50, 109 (1988).

    Google Scholar 

  24. C. Domb, J. Phys. C3, 256 (1970);5, 1399 (1972);5, 1417 (1972).

    Google Scholar 

  25. M. Aizenman, Comm. Math. Phys.86, 1 (1982); V. Dotsenko et al., Phys. Rev. Lett.71, 811 (1993).

    Google Scholar 

  26. S.J. Putterman,Superfluid Hydrodynamics, (North-Holland, Amsterdam, 1974), Chap. IV.

    Google Scholar 

  27. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys.49, 435 (1977).

    Google Scholar 

  28. V. Dohm, J. Low Temp. Phys.69, 51 (1987); J. Pankert and V. Dohm, Phys. Rev. B40, 10842 (1989).

    Google Scholar 

  29. R. J. Donnelly and P. H. Roberts, Phil. Trans. Roy. Soc.271, 41 (1971)

    Google Scholar 

  30. B.I. Halperin, P.C. Hohenberg, and E.D. Siggia, Phys. Rev. B13, 1299 (1976).

    Google Scholar 

  31. C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, J. Low Temp. Phys.52, 189 (1983).

    Google Scholar 

  32. R. J. Donnelly,Quantized Vortices in Helium II, (Cambridge University Press, Cambridge, 1991) p. 262.

    Google Scholar 

  33. V. L. Pokrovskii and I. M. Khalatnikov, JETP Lett.9, 149 (1969); I. M. Khalatnikov, Sov. Phys. JETP30, 268 (1970).

    Google Scholar 

  34. R. Carey, C. Buchal, and F. Pobell, Phys. Rev. B16, 3133 (1977); R. Williams and I. Rudnick, Phys. Rev. Lett.25, 276 (1970).

    Google Scholar 

  35. C. De Dominicis and L. Peliti, Phys. Rev. B18, 353 (1978).

    Google Scholar 

  36. V. Dohm, Phys. Rev. B44, 2697 (1991).

    Google Scholar 

  37. R. Petschek and A. Zippelius, Phys. Rev. B23, 3483 (1981).

    Google Scholar 

  38. R. A. Ferrell and J. K. Battacharjee, Phys. Rev. B20, 3690 (1979).

    Google Scholar 

  39. W. Y. Tam and G. Ahlers, J. Low Temp Phys.58, 497 (1985).

    Google Scholar 

  40. M. J. Lea, D. S. Spencer, and P. Fozooni, Jap. J. Appl. Phys.26, supp. 26–3, 53 (1987).

    Google Scholar 

  41. W. F. Vinen, inProgress in Low Temperature Physics, ed. C.J. Gorter, (North-Holland, Amsterdam, 1955), Vol.3, p.1.

    Google Scholar 

  42. L. P. Pitaevskii, JETP Lett.25, 154 (1977); P. Mathieu, A. Serra, and Y. Simon, Phys. Rev. B14, 3753 (1976).

    Google Scholar 

  43. M. B. Salamon, J. Shi, N. Overend, and M. A. Howson, Phys. Rev. B47, 5520 (1993).

    Google Scholar 

  44. D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B43, 130 (1991).

    Google Scholar 

  45. G. A. Williams, Physica B, Proceedings of LT20, to be published.

  46. J. Friedel, J. Phys. (Paris)49, 1561 (1988).

    Google Scholar 

  47. S. R. Shenoy, Helv. Acta Phys.65, 467 (1992); B. Chattopadhyay and S. R. Shenoy, to be published.

    Google Scholar 

  48. I. Schuller and K. E. Gray, Phys. Rev. Lett.36, 429 (1976).

    Google Scholar 

  49. S. G. Han, Z. V. Vardeny, O. G. Symko, and G. Koren, Phys. Rev. Lett.67, 1053 (1991).

    Google Scholar 

  50. H. Toyoki, J. Phys. Soc. Japan60, 1433 (1991); M. Mondello and N. Goldenfeld, Phys. Rev. B45, 657 (1992).

    Google Scholar 

  51. W. H. Zurek, Nature317, 505 (1985).

    Google Scholar 

  52. P. C. Hendry, N. S. Lawson, R. A. M. Lee, P. V. E. McClintock, and C. D. H. Williams, Physica B, Proceedings of LT20, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, G.A. Vortex dynamics at the superfluid λ-transition. J Low Temp Phys 93, 1079–1095 (1993). https://doi.org/10.1007/BF00692050

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00692050

PACS numbers

Navigation